SEMI-CLASSICAL ANALYSIS OF OCEANIC FLOWS

ISABELLE GALLAGHER

ABSTRACT. In these notes we present results of [5] and [8] in which the propagation of waves
is studied, in a model describing the movement of oceans in large geographical zones. We con-
sider a shallow water flow subject to strong rotation and linearized around an inhomogeneous
stationary profile, and we prove that the underlying system of PDEs can be diagonalized mi-
crolocally: the three linear propagators thus constructed correspond to particular types of
waves, namely two Poincaré and one Rossby wave. We show how Mourre estimates allow to
obtain the dispersion of Poincaré waves; in the case when the stationary profile is zonal we
prove by ODE techniques that for initial data microlocalized in some codimension one set,
Rossby waves are trapped for all times.

1. INTRODUCTION

The aim of these notes is to present results of [5] and [8], in which the long time propagation
of waves induced by a rotating, shallow water model is analyzed.

1.1. The model. The ocean is considered in this (toy) model as an incompressible, inviscid
fluid with free surface submitted to gravitation and wind forcing, and we further make the fol-
lowing classical assumptions: we assume that the density of the fluid is homogeneous (meaning
that the density p is equal to a constant pg), that the pressure law is given by the hydrostatic
approximation p = ppgz, and that the motion is essentially horizontal and does not depend
on the vertical coordinate. This leads to the so-called shallow water approximation.

For the sake of simplicity, the effects of the interaction with the boundaries are not discussed
and the model is purely horizontal with the longitude x; and the latitude x2 both in R.

The evolution of the water height h and velocity v is then governed by the shallow-water
equations with Coriolis force

Ot(poh) + V - (pohv) =0

1.1
(11) dr(pohv) + V - (pohv @ v) + w(pohv)t + poghVh = poht

where w denotes the vertical component of the Earth rotation vector Q, vt := (—wvg,v1), g is
the gravity and 7 is the stationary forcing responsible for the macroscopic flow. The vertical
component of the Earth rotation is therefore Q2 sin(z2/R), where R is the radius of the Earth;
note that it is classical in the physical literature to consider the linearization of w (known as
the betaplane approximation) w(xs) = Qx2/R. We consider general functions w in the sequel,
with some restrictions that are made precise later.
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We consider small fluctuations (n,u) around the stationary solution (h,?) satisfying
h = constant, V-(0®7)+wit =7, divi=0.

Let us adimensionalize the previous system. We define b := w/|Q2|, and we consider typical
time, length and velocity scales ty ~ 10s (~ 0,38 months), £y ~ 10*km and vy ~ 0.1ms™".
We also consider typical height and velocity fluctuations 6h = (h — h)/n ~ 1m and u =
(v — ¥)/vg = v/vg — 4. Finally we define a small parameter ¢ ~ 107! (actually of the
size of Fr? and Ro2 where Fr is the Froude number and Ro the Rossby number, measuring
respectively the influence of gravity and of the Coriolis force). After some computations we
come up with the following system:

1
om+=V-u+a-Vn+e°V-(nqu) =0,
(1.2) . ) <
8tu+gbuL+gVn+ﬂ-Vu+u~Vﬂ+€2u-Vu:0.
Defining the sound speed ug by
n= [(1 +53U0/2)2 — 1]/63,

we obtain that (1.2) is equivalent to

(1.3) e20,U + A(z,eD,e)U + 3Q(U) =0, U = (ug, uy, uz)
where A(z,eD,¢) is the linear propagator
eu-eV e I36))
(1.4) A(z,eD,e) =i 1531 et - eV 4 €201 —b+ 2091y
€0s b+ 6261ﬂ2 eu-eV + 5282’L_L2

and Q(U) := S1(U)eh U + S2(U)edU with

(5] %UO 0 u9 0 %UO
(1.5) Sl(U) = %UO (3] 0 and SQ(U) = 0 u9 0

0 0 wuw sug 0 up

We shall assume throughout the paper that b is smooth, with a symbol-like behaviour: for
all a € N, there is a constant C,, such that for all z5 € R,

(1.6) 15 (22)] < Car(1 + b2(22)) .

We shall further assume that

lim b*(z2) = oo,
|z2|—00

and that b% has only non degenerate critical points. We shall also assume that @ is a smooth,
compactly supported function.

We shall finally suppose that the initial data is microlocalized (see Appendix A for definitions)
in some compact set C of T*R? satisfying

(1.7) cnf{e =0t=9.

In the following, to simplify some formulations, we shall denote by (u)Supp, f the projection of
the (micro)support of f onto the x = 0 axis, where * represents an element of {x1,x2,&1,&2}.
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Because of the specific form of the initial data, involving fast oscillations with respect to x,
we introduce semi-classical Sobolev spaces

H: ={U e L’/ ||[U||lgs < +o0} with [UlF: = D> (eV)'U|7..
|k|<s

A classical result based on the Sobolev embedding
c
leVU| Lo < ;HVUHHES for any s > 1,

implies that (1.2) has a unique local solution U, € L®°([0, T), H5*1). Note that the life span
of U, depends a priori on €. One of the results proved in these notes is existence on an e-
independent time interval (see Theorem 6 in Section 5), assuming the initial data is bounded

in a weighted semi-classical Sobolev space, adapted to the linear propagator (in the spirit
of [7]):

(1.8) W = {f € L2(R?) /(1 — £20%)5 (1 — €202 + b (12))3 f € LQ(RQ)} .
But most of the analysis will actually be carried out on the linear system
(1.9) €20,V + A(z,eD, )V = 0.

The structure of these notes is the following.

e In Section 2 we prove an abstract diagonalization result (Theorem 2) on systems of
the form (1.9), when the principal symbol matrix of A(x,eD,¢) is diagonalizable with
eigenvalues which do not cross. We apply the general result to the specific case of (1.4),
which allows to compute Poincaré and Rossby operators (Theorem 1).

e In Section 3 we prove that Poincaré waves exit any compact set for any positive time
(Theorem 3). The proof relies on Mourre estimates. We also provide a different proof
in the case when @ is a shear flow, which relies on a semi-explicit representation of
the solution. Though less general than the first one, we feel this proof can have some
interest in nonlinear applications for instance, due to its more explicit form.

e Section 4 is devoted to the study of Rossby waves. It is proved that Rossby waves
stay confined for all times in the latitude (x3) direction (Theorem 4). In the longi-
tude (x1) direction such a result is only obtained in the special case of a shear flow
(see Theorem 5). To prove the result we study the integral curves of the associated
Hamiltonian.

e Finally in Section 5 we prove that the life span of the nonlinear system (1.3) is uni-
formly bounded from below, and check that the nonlinear solution stays close to the
linear one. The method relies on the construction of almost commuting vector fields,
which is possible here due to the semi-classical nature of the problem. That explains
the introduction of W¢ in (1.8).

e We have gathered in an appendix all useful results in microlocal and semiclassical
analysis. The reader is invited to consult the appendix for definitions and notations
used throughout the text.

Remark 1.1. We study here a very particular situation when the initial data is localized
i a very small region of space, and has a compact frequency support — this allows to apply
semi-classical methods and have an effective way of studying the propagation of waves. Note
that many studies have been devoted to other situations where the initial data does not present
such localization properties. We refer for instance to [1], [2], [3], [4], [7], [9], [10], [17], [18],
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[19] and the references therein for such studies in the context of rotating fluids. We refer also
to [15], [16], [20], and [21] for references in the Phyiscal litterature.

2. DIAGONALIZATION

2.1. Statement of the theorem. In this section we shall prove the following result.

Theorem 1 (Rossby and Poincaré propagators). Let v be a family of initial data, microlo-
calized in a compact set C satisfying Assumption (1.7). For any parameter € > 0, denote by v,
the associate solution to (1.9). Then for allt > 0 one can write v:(t) as the sum of a “Rossby”
vector field and two “Poincaré” vector fields: ve(t) = vE(t) +vZI(t) + v (t), satisfying linear
equations

iedvl = Trvlt,  i20,vE = TuvE,
where the principal symbol of each operator is given by

b/
W) = gy HOE i onTe) =+ &+ o).

This theorem is a consequence of general diagonalization result stated and proved in the
coming paragraph.

2.2. A general diagonalization theorem.

Theorem 2 (Diagonalization). Let K be a compact subset of R*?, and consider a N x N
hermitian pseudodifferential matriz A, = A(x,eD,¢€), supported in K. Assume that

e the (matriz) principal symbol of A(x,eD,0), denoted by Ay, is diagonalizable, in the
sense that there are some unitary and diagonal matrices of symbols, U and D, such
that U Y AgU =D,

e the eigenvalues (61(x,€),...,0n(x,§)) satisfy

2.1 Vi, inf |6;(x,€) — 8i(x, &) > C > 0.
(2.1) i # j (x,lgelC| (z,8) — d;(x, &)

Then there exists a family of unitary and diagonal pseudodifferential operators V. and D,
supported in IC, such that:

(2.2) VIAV. = Do+ O(), VIVe=I+0(=).
Moreover one has

(2.3) D. = Do +eD; + O(e?),

where Dy = OpYY (D) and the principal symbol of D is given by

Dol + I1D0)>

D) = 0,(Dy) = diag (ap(ﬁl — 5

with the notations

(24) A= % (OpY @) A.0pY U) — Do), I = - (OpY @")OpY U) — 1) .

™ | =
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More explicitly, let us denote by a;j(x,&) the matriz elements of Ay, subsymbol of A(x,eD,¢)
defined by Ay := 0, (0:A) and by unj(x,§), j =1...d, the coordinates of any unit eigenvector
of Ao(x, &) of eigenvalue 6, (x,&). We have

(2.5)

_ d
- ajp{Tjn, Urn } . 1 .
(D1)nn = jk;: ; (S (ujn{ajk,ulm}) + JJ2Z> + (U Al ) nn) + % ;671{“3‘71’“3'”},

where {f, g} := VefVig — VaifVeg is the Poisson bracket on T*RY.

Here and in all the sequel, we say that a pseudo-differential operator V' is unitary if it satisfies
V*V =14 O(e™).

The proof is presented below: we only give the formal construction and we leave it to the
reader to check that the symbols of the various operators formally constructed are indeed
symbols. Section 2.3 is devoted to the case of the matrix given by (1.4).

The proof of Theorem 2 is a combination of semiclassical and perturbation methods. Let us
start by defining Uy := Opgv (U) . Elementary properties of the Weyl quantization imply then
that

UsAUy = Dy + O(e) .

The following lemma shows that one can construct a unitary pseudodifferential operator Ux
such that

Ul AUsx = Dy + O(g).
Lemma 2.1. Let U be a pseudodifferential matriz such that U*U = I + €1y, where I is the

identity. Then one can find V ~ Zska such that (U 4+eV)*(U +eV) =1+ 0O(e™).
k=0

1
Proof. Let us denote Vj := _iUIL On easily checks that (U + eVp)*(U +eVo) = I + O(e?).
Indeed

(U+eVo)' (U +eVo) = U'U = S(LU*U +U*UL) + O(e?)
= I+4el; —cl +0(?).

Then one concludes by iteration. O

That lemma allows to define the pseudo-differential operator of (semiclassical) order 0
1 *
Al = g (UOOAEUOO - DO) )

where Uy, is a unitary operator. Now our aim is to find a unitary operator V, (up to O(£*))
such that

(Uso Vo) " Ac(Uxo Vi) = Do + O(e°)

where Doo = Do+eDj+. .. is a diagonal matrix satisfying the conclusions of the theorem. We
shall write Vo, = €', with W selfadjoint (so Vi, thus constructed is automatically unitary).
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(o.)
We look for W under the form W ~ Z Wy, and compute the W recursively. Since
0

Vi(Do+eA1)Voo = (Do + eAy) +ie[(Do + eAy), W] + (Z;)2 [(Do+eAy), W],W]+...

we see that, if W7 satisfies

(2.6) i[D(), Wl] + Ay =D+ O(E), D, diagonal,
then we have that
(27) €_iEW1 (DO + €A1>€iEW1 =Dy+eDy + €2A2 ,

where As is a zero order pseudodifferential operator. The following lemma is a typical normal
form type result, and is crucial for the following.

Lemma 2.2. Let Dy be a diagonal pseudodifferential matrix whose principal symbol Dy has
a spectrum satisfying (2.1) and let Ay be a pseudodifferential matriz. Then there exist two
pseudodifferential matrices W and Dy, with Dy diagonal, such that:

(28) [D07W]+A1:D1+E£27

where Ay is a pseudodifferential matriz of order 0. Moreover the principal symbol of Dy is
the diagonal part of the principal symbol of A1: we have o,(D1) = diago,(Aq).

Proof. By the non degeneracy condition of the spectrum of Dy we find that there exists a
matrix Wy and a diagonal one D; such that [Dy, Wy| + D19 = D1 , where D  is the principal
symbol of Aj. Indeed it is enough to take D; as the diagonal part of D; g and

(Dl 0(93 5))‘ ]
2.9 Wo(x,§))ij =
and notice that the Weyl quantization of W) satlsﬁes (2.8). The lemma is proved. g

By Lemma 2.2 we know that there exists W satisfying (2.6). Writing
e~ W1 (Do + 6A1)6’i€wl =Dy + 6(A1 + [Do, Wl]) + 62(A2 — Ag),

we get immediately (2.7). It is easy to get convinced that all the Wy will satisfy recursively
an equation of the form [Dg, Wi| + Ax = Dy + O(e), which can be solved by Lemma 2.2. In
order to derive (2.5) we have to compute the subprincipal symbol of the diagonal part of the
right-hand side of (2.4), that is, for each n =1...d,

Zops Jjn Ops ((A0+5~Al)jk)op5 (ukn - *Z(S {u]naujn}

since U is umtary. The term A4, is obviously responsible for the second term in the right-hand
side of (2.5). Using the distributivity of the Poisson bracket, we get the following expression
for the first one: )
> 55 (Wi (Ao)jilhin} + Usn{ (Ao) v Usn})
ik
1 — [ .
= = (Un{(A0)ji:Uin} + (A0)jk{lin, Unn } + Unn {TUjn, (Ao)ji}) -

21
ik
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Interverting j and k& in half of the terms and noticing that, since Ag is Hermitian, (Ao);r =

(Ao)kj, we get easily (2.5).

2.3. The Rossby-Poincaré case. In the case of oceanic waves we compute

0 & & w-& 0 0
Ao(z,&) =& 0 —ib and Aj(z, )= 0 w-& O
& ib 0 0 0 a-¢

A straightforward computation shows that the spectrum of Ay is

{0, \/£%+£%+62<x2>,—\/£%+£§+b2<:cz>} :

2.3.1. Microlocalization. The three eigenvalues of Ag are separated if and only if
& +65 + b (22) £ 0.
Therefore, considering a compact subset K of R* such that

Kn{(z1,22,6,&) /& + & + b7 (v2) =0} =10

ensures that

e the eigenvalues do not cross, so that it is possible to get a unitary diagonalizing matrix
with regular entries;
e the non degeneracy condition (2.1) is satisfied.

In other words, A(x,eD, ) satisfies the assumptions of Theorem 2 provided that one considers
only its action on vector fields which are suitably microlocalized. We assume of course that this
microlocalization condition is satisfied by the initial datum, or actually the more restrictive
condition (1.7). Furthermore, we shall prove in the next two sections that the propagation by
the scalar operators Ty and T (to be defined now) preserves this suitable microlocalization,
thus justifying a posteriori the diagonalization procedure for all times.

2.3.2. Computation of the Poincaré and Rossby Hamiltonians. The above computations show
that one can define the two Poincaré Hamiltonians as follows:

Ty = :I:\/ff + &3 4 b2 (x2)

and we shall denote the associate operator constructed via Theorem 2 by 7.

Now let us consider the Rossby Hamiltonian. In all this paragraph, for the sake of readability,
we shall denote

(&b = \/ff +&5 +0%(2).
An easy computation shows that a (normalized) eigenvector of Ay(z, &) of zero eigenvalue is
1 b

ug = Ge &2

<§ b —ifl
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By Theorem 2, the Rossby Hamiltonian is then given by the formula

(2.10) TR = Z <S (Uj(){@jk,'llsz})"‘W) + Z (A1) jrT50uko -

, 2 ,
7,k=1...3 7,k=1...3
The contribution of the first term in the parenthesis in (2.10) is

Z (Wjo{ajk, uko})

jk=1..3

“gEm oot e 1 e))
— _ibgl axg 1 . i£2£1b/ 1 &1 b Zflb/a§2 fg

(€ G GIIN
_ 26
GY

Using the distributivity of the Poisson brackets, we get the contribution of the second term
in a very similar way

852 + am

v s s

Z a;k{U;0, uko }

jk=1..3 2
%{W>U§}{éﬁ |
i 1 1 1£2€1 1 1b&1 1
51<<§> {<§> ’&} <§>{b 5} @ ) “{ >b}‘<f§b{<§>b’&}

—i'&
%

The computation of the second term of the right hand side of (2.10) is trivial since A; is a
multiple of the identity. Adding the two previous expressions we get finally

&1t
£2 4+ €2 + b(x2)?
and the associate operator will be denoted by Tg.

TR = +ﬂ.§

Remark 2.3. Since the elementary steps of the diagonalization process use only multiplica-
tions, computations of subprincipal symbols and solving normal form equations, all the sub-
symbols of Tr and Ty depend on x1 only through u and its derivatives.

3. DISPERSION OF POINCARE WAVES

The goal of this section is to prove the following result.

Theorem 3 (Dispersion of Poincaré waves). Let v. o be a family of initial data, microlocalized
in a compact set C satisfying Assumption (1.7). For any parameter € > 0, denote by vf the
Poincaré component of the solution v to (1.9) constructed in Theorem 1. Then for any
compact set Q in R?, one has

vt >0, [vE(t)ll12() = O(™).
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In Theorem 1 we constructed two linear operators, called T+, whose principal symbols are

Ty = i\/gf + & + b2 (x2) .

We now want to study the propagation equation associated to those operators, namely the
linear equation in R x R?

(3.1) ie?0rpx = Teps, Prj—o = 9%

where Y. are microlocalized in a compact set C satisfying Assumption (1.7). Before studying
that equation we need to check that it makes sense, since a priori T4 is only defined on vector
fields microlocalized on such a compact set. This is achieved in the coming section, where we
check that the separation of eigenvalues (2.1) required in the statement of Theorem 2 holds

because \/ €2 + €2 + b%(x2) remains bounded away from zero during the propagation.

Then we shall show that the solutions to these equations exit any compact set in finite time.

3.1. Microlocalization. Let us prove the following result, which allows to make sense of
Equation (3.1) for all times.

Proposition 3.1. Under the assumptions of Theorem 3, the operators Ty are self-adjoint,
.t
and the function p(t) = ¢'=2 1% O are such that pSuppo(t) satisfies (1.7) for all times.

Proof. The proof of that result relies on a spectral argument. Due to the form of the principal
symbols of Ty recalled above, the operators T4 are self-adjoint and for each fixed & have
discrete spectrum. We can therefore define two families (wﬁ u)neN uer of pseudo-eigenvectors
of Ty in L?(R?) and eigenvalues )\i ., such that if the initial data writes

A (x) = / S EyE (2 dy,

then

AE Lt
wi(t, ) :/ZeZ <2 ci’gvﬁiu(x) du .

Since the eigenfunctions 9 are microlocalized on the energy surfaces of the Poincaré Hamil-
tonians, the result follows. U

3.2. Dispersion. In this paragraph we shall prove the dispersion result. The strategy is the
following. In Section 3.2.1 we prove using semi-classical analysis that for a very short time,
the solutions to (3.1) remain microlocalized in a compact set satisfying assumption (1.7), and
such that pSupp,, ¢+ become disjoint from Supp, @. Section 3.2.2 is then devoted to the
long-time behaviour of the solution, and Mourre estimates allow to prove that the solution
exits any compact set after some time, and that it remains microlocalized far from &; = 0.
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3.2.1. Short time behaviour. The aim of this paragraph is to prove the following result. It
shows that the solutions of (3.1) exit the support of @ after a time teyite, for |texit| large
enough (independent of €). We only state the forward in time result: the backwards result is
identical, up to changing the sign of time. We shall further restrict the analysis to Ty since
the argument for T_ is identical, up to some sign changes.

Proposition 3.2. Let ¢" be a function, microlocalized in a compact set C satisfying As-
sumption (1.7) and let ¢ be the associate solution of (3.1). Let [u—,uy] be a closed interval
of R containing Supp,,u. There exists a constant texiy > 0 such that for any e €]0,1[, the
function p(etexit, ) is microlocalized in a compact set KC such that the projection of K onto
the x1-azxis does not interesect [u_,uy|. Moreover pSuppe, ¢ 1s unchanged. More precisely,
if pSuppe,® C RT\ {0}, then pSupp,, p(ctexit, ) Clus, +ool, and if pSuppe, ¢ € R™\ {0},
then pSupp,, o(etexit, ) C] — 00, u_][.

Proof. Define the function 9(s) := ¢(es). Then (3.1) reads
(32) ’L'EaS@D = T+¢7 17zj|s=O - 900 )

and any result proved on % on [0,7] will yield the same result for ¢ on [0,7e]. Notice
that (3.2) is written in a semi-classical setting, so by the propagation of the microsupport
theorem, the microsupport of 1 is propagated by the bicharacteristics, which are the integral
curves of the principal symbol. The bicharacteristics are given by the following set of ODEs:

{ I.'t = V§T+(§§,l‘§,£§), a0 = (‘T(l)a :Z:g)
gt - _V$T+(€iv xgv &é)? 50 = (g?v 58) :
Notice that 7, is independent of x1, so ﬂ is identically zero and therefore & = ¢). So for

all s > 0, the microlocal support in & of ¥(s) remains unchanged, and in particular is far
from & = 0. Moreover one has

&

ot
xl - .
V(€ + (€4)7 + 02(ah)
Now we recall that the bicharacteristic curves lie on energy surfaces, meaning that on each
bicharacteristic, 74 (€9, x5, £4) is a constant. That implies that (£5)? + b?(2h) is a constant on
each bicharacteristic, so that for all times,

3

ot
]Il = .
V(€D + (69)7 + 02(a9)
If ¢€) > 0, then x is propagated to the right and eventually escapes to the right of the support
in 71 of 4, whereas if ) < 0, the converse (to the left) occurs. Proposition 3.2 is proved. [

3.2.2. Long time behaviour. The aim of this paragraph is to prove the following result, which
again is only proved for positive times for simplicity.

Proposition 3.3. Under the assumptions of Proposition 3.2, let o+ be the solution of (3.1)
associated with the data ¢(eteit, ). Then pSupp, ¢t (t) does not intersect Supp, u for t >
Eloxit, and /LSuppglgoJr(t) remains unchanged for t > eteyis. Finally pSupp,, o™ (t) exits any
compact set in r1 as soon as t > ctexit-
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Proof. Before going into the proof, we shall simplify the analysis by only studying the case
of T (the case T_ is obtained by identical arguments), and we shall only deal with the case
when the support in &; of the data lies in the positive half space. The other case is obtained
similarly.

The proof is based on Mourre’s theory which we shall now briefly recall, and we refer to [13]
and [12] for all details. Let us consider two self-adjoint operators H and A on a Hilbert
space H. We make the following assumptions:

(1) the intersection of the domains of A and H is dense in the domain D(H) of H .
(2) t > €4 maps D(H) to itself, and for all ©° € D(H),

sup ||He™ 0| < oc.
telo,1
(3) The operator i[H, A] is bounded from below and closable, and the domain D(Bj)
where iBj is its closure, contains D(H). More generally for all n € N the opera-
tor i[iBy, A] is bounded from below and closable and the domain D(By,41) of its clo-
sure i By, 41 contains D(H), and finally B,,;; extends to a bounded operator from D(H)
to its dual.
(4) There exists # > 0 and an open interval A of R such that if Ex is the corresponding
spectral projection of H, then

(3.3) EAi[H, A]EA > 0FA.

Note that Assumptions (1 - 3) can be replaced by the fact that [f(H), A] and all commutator
iterates are bounded for any smooth, compactly supported function f (see [12]).

Under those assumptions, for any integer m € N and for any 6’ €]0, §[, there is a constant C
such that

IX- (A~ a— 8"y Hg(H)x, (A - a)]| < O™

where 4+ is the characteristic function of R*, g is any smooth compactly supported function
in A, and the above bound is uniform in a € R.

- Lexit

Let us apply this theory to our situation. We consider equation (3.1) with data e' = T <p9r,
and let us define the operator T_io_ as the operator T where @ has been chosen identically zero.
We shall start by studying the equation

- toxi
i exit T 0
N +90+ ’

for which we shall prove Proposition 3.3. Then we shall prove that the solution @ actually

(34) iéﬁ@t& = T—?—SZ> &\tiatexit =e

 texi
solves the original equation (3.1) with the same data e’TtT+<p3_ at t = elexit up to O(e>),
because its support in z1 lies outside the support of u and because the symbolic expansion
of T\ depends on x; only through @ and its derivatives (see Remark 2.3).

So let us start by applying Mourre’s theory to (3.4). Let us write the projection of K onto
the &i-axis as included in [dy,di] with 0 < dy < di < oo. We recall that on the support

- Lexit

of e T+ go(}r, 1 remains to the right of the support of . Then we apply the theory to H = Tﬂ
and to A = 71 (the pointwise multiplication). Assumptions (1) to (3) are easy to check, in
particular because this is a semiclassical setting, so only the principal symbols need to be
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considered. Similarly finding a lower bound for Eai[T" ﬂ, x1]|EA boils down to computing the
Poisson bracket {74, z1} and one finds

&1
(3.5) {rp a1} = -
VE + & + b (x2)
Since Tfﬂ has constant coefficients in x1, & is preserved, so in particular for all times one
has pSuppg, #(t) C [do,d1]. One can furthermore choose for A an interval of R of the
type |Dg, D1[ where the constants Dy and D; are chosen so that for any (z,£) € K, one
has

(3.6) Do < /€ + & + b2(x2) < D

As the microlocal supports of the eigenfunctions of Tﬂ lie on energy surfaces, we know that
the solution to (3.4) will remain in Fa for all times. Now let us apply the results of [13]
and [12]. By (3.5), (3.6) and the assumption on &; written above, we have that

EAi[H, A]EA > EQEA ,
Dy
. . i(tfstexit)TO ’LMT 0
so (3.3) holds with 6 = edy/D;. It follows that the solution e <2 "+ (e’ "= "+ ) to (3.4)
has a support in z; such that

do t
$1>U++Eg

which proves the result for (3.4).

- (t—etexit)

Since pSupp,, e <

0 - toxit _
T (eZ T goS)r) does not cross Supp,, 4, one has actually

- (t—etoxit) 0 toxi  (t—etoxit) i texi .
el 2 =T (eZTtT+(p3_) = 2 Ty (eZTtT+(p9_) in L2
locally uniformly in ¢, due to the following lemma. The proposition follows. U
Lemma 3.4. Let A, and A, be two pseudo-differential operators such that

e iA. is hermitian in L?>(R%),

o A, — A. = O(e>®) microlocally on Q C R,
Let @ be a solution to i0yp+ A.3 = 0 microlocalized in Q, and ¢ the solution to iOyp+Acp = 0
with the same initial data. Then, for all N € N,

sup [lo(t) — @)l L2mra) = O(™) .
t<e—N

Proof. The proof is based on a simple energy inequality and is completely straightforward.
We have J
%HSD - 85“%2(Rd) = 2(iAcp — 1A Pl — P)

= 2((iA: — ZAE)¢|‘P 2]

<2((Ae — APl 2maylle — PllL2ma) -
This leads to

le(t) = @(D)I72ma) = O(X)E,

which concludes the proof. U
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3.3. An alternate proof. In the case when b2 has at most one, non degenerate critical point,
one can use a more direct, semi-explicit method to obtain the result. The first step consists in
taking the Fourier transform in x; (recalling that the problem is invariant by translations in
the x; direction). We also recall that the data is microlocalized on a compact set C such that &;
is bounded away from zero. Since T = £1/&2 + b2(z2) + £7, functional calculus implies that
one can find classical pseudo-differential operators H4 (&) of principal symbols &2 + b?(x2)
such that Ty = ++/Hx(&1) + &2, Let us now call M5 (¢1) and % (£1;22) the eigenvalues and
eigenfunctions of H (&1). We refer to [5] for a proof of the following proposition.

Proposition 3.5. Let ¢ be an eigenfunction of Hy(&1), microlocalized on an energy surface
which interstects C. Then ¢ and its associate eigenvalue A are C*™ functions of &. More-
over %851)\ is bounded on compact sets in &;.

Let us now carry out this program. We consider an initial data denoted ¢°, microlocalized
in C. One can take the Fourier transform in x1 which gives

1 - T181
©(x) = %/@0(517332)6_2 gy

Now let us consider a coherent state (in Fourier variables) at (¢, p) (see Appendix A), that is:

1 g1 _ (61-)2
(3.7) Ygp(&1) = Te's e 2
(me)a

After decomposition onto coherent states we get

P —

V27e ()i
where @°(q,p,z2) = (goqp]gbo(',mz))p. We notice that the integral over p and ¢ is, mod-
ulo O(e*), on a compact domain due to the microlocalization assumption on ¢°. Finally
decomposing onto the eigenfunctions go’jc(&; x9) gives

1 1 -61(q—=z7) (61-p)2

0 0 k )

gom—iig 0 (q,p; k, &) ix0)e'” e e 2= dgdpd
( ) /72 5( 6)% - / (q p é‘l) i(€1 2) qap 51

where 2°(q, p; k, &1) := <<Pi(§1; Ne(q, p, ~))L2 . Note that the dependence of Z° on &; is only

£1(g—x1) _ (61-p)

/ (g, pyw2)e M e 3 Gadpde,

through the eigenfunction api, so @Y depends smoothly on &, as stated in Proposition 3.5.

The sum over k contains O(e™!) terms, due to the fact that A% (¢;) remains in a finite interval
(this can be seen in the proof of Proposition 3.5 in [5]). Now it remains to propagate at time
t/e? this initial data, which gives rise to the following expression:

1 1 7% -€1(g—77) _(51—;})2 Nk 2
\/%W Z / SOO(q,p; ky 51)‘105:(51; x9)e' = e 2= e FHAL(€1)+E7)
TE)L

The stationary phase lemma then gives that this integral is O(£°°) except if there exists a
stationary point, given by the conditions:

ol

= dqdpd¢; .

261 4 0, ]
L2+ 06 A0(8),

2/ M (6) +€F

0.

§&1 =pand e(z; — q)
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The second condition gives

2 /N6 + € —a) =2 (2 + B ML)

Therefore, since p # 0 and the A% ’s are bounded, with d¢, A% (&) = O(e), there is no critical
point for z; in a compact set. Proposition 3.5 therefore allows to apply the stationary phase
lemma and to conclude the proof of Theorem 3. Notice that the (fixed) losses in € (namely
the negative powers of € appearing in the integrals and the number of k’s in the sum) are
compensated by the fact that the result is O(¢°°); it is important at this point that as noticed
above, the function % depends smoothly on &.

4. TRAPPING OF ROSSBY WAVES

In this section we shall prove that Rossby waves are trapped if the initial data is correctly
microlocalized. Recall that the Rossby projection V§ of the solution v, to (1.9) satisfies the
equation

&b’
& + &5 + blaz)
The first point one must check is that the solution to that equation remains microlocalized in

a set satisfying the separation condition &3 + &5 + b(x2)? # 0. This is performed in the next
Section 4.1.

(4.1) { € =T op(Tr) =Tr =

+a-g.
Q=0 = ¢°, 2 ¢

In the case of a general u we are only able to prove trapping in the latitude direction. The
result is the following.

Theorem 4 (Trapping in the latitude direction). Let v.o be a family of initial data, mi-
crolocalized in a compact set C satisfying Assumption (1.7). For any parameter € > 0, denote
by vE the Rossby component of the solution v to (1.9) constructed in Theorem 1. Then there
1s a compact set Ko of R such that

vt >0, uSupp,,vi(t) C Ks.
In the case when @ is a shear flow, u = (u1(22),0), the analysis can be made more precise. We
assume in the following that there are two points y; # y2 in R such that @;(y1) = @1 (y2) =0,
and for instance that 41 < 0 on |y, yo[. We also assume that b does not change sign on ]y, ya|.
We prove the following result.

Theorem 5 (Trapping in the longitude direction, the shear flow case). Under the above
assumptions on U and b, there is a subset A of codimension one and a compact set C of R?
such that any family v o of initial data microlocalized in A satisfies the following property:
the Rossby component vE of the solution v. to (1.9) constructed in Theorem 1 satisfies

¥t >0, [vE(t)l12(c) = O(1).

The proof of Theorem 4 is given in Section 4.2 while Section 4.3 is devoted to the proof of
Theorem 5.
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4.1. Microlocalization. Because of the scaling of the Rossby hamiltonian, on the times
scales considered here the propagation of energy by Rossby waves is described by the hamil-
tonian dynamics

d.%i o aTR dfl o 87’3
dt — 0& dt Oz

which can be written explicitly

d b — 26

do b/(mw T (o),

d.’EQ / 5152 —

2 — 9} —_— 4 )
(12) " (2 g )

% = —0u1(x)& — Orug(x)&a,

AV N/ 2
% g 2b(b)<§>§b ©F _ o0 (0)61 — rale)

where we recall that (£), = /& + &2 + b2(z2) . In order for the dynamics to be well defined
and also in order to justify the diagonalization process, we need the quantity (£); to remain
bounded from below for all times.

Proposition 4.1. Let C be some compact subset of R* such that

CN{(w1,m2,61,8) /& + &5+ b*(22) =0} = 0.

Then the bicharacteristics t — (z(t),&(t)) of the Rossby Hamiltonian starting from any point
(29, 29,£0,€9) of C are defined globally in time, and Vt € R,

inf (&) 4 &) + b (za(t)) > 0.

(29,23,€9.63)€C

Proof. As b, V", w and Du are Lipschitz, by the Cauchy-Lipschitz theorem the system of
ODEs (4.2) has a unique maximal solution. In order to prove that this solution is defined
globally, it is enough to prove that the time derivative of this solution is uniformly bounded.

1
This comes from assumption (1.6) giving an upper bound on /(1 + b*(z2))? and b”/(1 +

1
b?(z2))?, and from the lower bound on (£); to be established now.
The crucial assumption here is the fact that ¥’ and b do not vanish simultaneously.

So let us suppose that (), vanishes, and consider the first time ¢* at which (£),(¢t*) = 0.
Assume to start with that z(¢*) lies outside the support of @. Then there is a small amount
of time (t7,t*), t~ < t*, on which z(t) remains outside the support of @. So on the inter-
val (t7,t*),& is a constant hence remains zero, and an inspection of the ODEs then shows
that on (t7,t*), z2 and & are also constant, hence (£)(¢) = 0 which is impossible by definition
of t*.

Now let us assume that z(t*) does not lie outside the support of @4, where t* is still the first
time t* at which (£),(¢*) = 0, assuming such a time exists. We shall prove that

(4.3) ()] S (1 — )2, ¢ — 1",
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Indeed we have clearly
1d df1

5%@5 = b(l‘z)b/(@) dt 51

(4.4) = b(xg)bl(.%'2>ﬁ2(x) — 61ﬂ(a:) . § — 8271(.%') . f +

+ 52 d&

V' (22)6162
(©)3

d
so in particular we find that %@)g is bounded as ¢ goes to t*, hence (4.3) holds.

Moreover along a trajectory of the Rossby Hamiltonian, 7 is conserved, and we have

dx b (x 2(tp — u(x) - €)?

dt (&)} V' (z2)
Since b’ and b do not vanish simultaneously, this in turn implies that there is a constant C
such that as t goes to t*,

da:l

dat | = t* —t
In particular there is a time ¢ < t* at which the trajectory has escaped the support of u,
which is contrary to our assumption. This concludes the proof of the proposition. O

4.2. Trapping in the latitude direction.

Proof of Theorem 4. The energy surfaces corresponding to 7 # 0 are bounded in the x3
direction : as xo — £00,

b (22)&
+a(x)-£—0.
(3
Consider now a trajectory on the energy level T = 0, and some point of this trajec-
tory (y1,¥2,&1,&2) such that yo ¢ Supp,, 4. One has
V' (y2)61 = 0.

- If ¥ (y2) = 0, then

dry dvy d&  d&

dt dt  dt dt
The uniqueness in Cauchy-Lipschitz theorem implies then that the trajectory is nothing else
than a fixed point, and therefore in particular is bounded.

-If & =0, then

diy _d& _d& o dn
dat  dt dt dt

& +0°(y2) — &

©p
meaning that the trajectory is a uniform straight motion along x1. In particular, it is bounded
in the xs-direction.

= b,(yz)

Finally, we conclude that trajectories on the energy level 7g = 0 are either trapped in the
support Supp,,, or trivial in the z2-direction. O
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4.3. Trapping in the longitude direction in the shear flow case.

Proof of Theorem 5. The strategy to study the qualitative behaviour of the trajectories is to
first (in Paragraph 4.3.1) consider the motion in the reduced phase space (r2,&) € R? and
then (in Paragraph 4.3.2) to study the motion in the x; direction.

4.3.1. Trajectories in the reduced (x2,&2) phase space. In this section we study the trajectories
in the reduced (z2,&2) phase space. We shall denote &1 := £).

Since the Hamiltonian 7 and &; are conserved along any trajectory, trajectories are subman-
ifolds of

Ergy = {(22,€2) € R*;TR(61,22,6) = 7}
In the following we shall note for any energy 7 and any & € R*

b (22)& 2 _ g2
T{@)& — & — b7 (2),

so that if D := {332/‘/;-751(332) > 0}, then &¢ = {(:Eg,:l:\/vﬂgl(l’g)), Ty € D}. Note

that V¢, (24) becomes singular if 2} reaches a point z9 such that 7 = @ (z2)&.

VT7€1 (xz) =

Several types of trajectories can correspond to such a system (see [5]), we shall isolate two
particular types of trajectories here: periodic ones, and asymptotic ones.

Periodic trajectories: These correspond to the case when there exists [Zmin,Tmaz] In R
with Zmin # Tmae, containing 1’8 such that

o V¢ has no singularity and does not vanish on |Zmin, Tmazl;
® Vri& (xmzn) = VT,fl (xmax) =0;
e the points x,,;, and T, are reached in finite time.
The extremal points x;, and x4, are then turning points, meaning that the motion is

periodic, with a typical phase portrait as shown in the figure.

&

Xmm )

Asymptotic trajectories: These correspond to the case when there exists an interval [Zin, Tmaz]
of R containing z9 such that
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o V. ¢ has no singularity and does not vanish on |Zmin, Tmazl;

® Tinin and Ty, are either zeros or singularities of V¢ ;

e ast — oo, :U'é — 25° where 25° € {Zmin, Tmaa} is a pole of multiplicity 1 of V. ¢, . For
the sake of simplicity, we further impose that b'(z3°) # 0.

Let us compute the rate of convergence of £ to infinity: without loss of generality, we can
consider the case when the asymptotic point is x;,4,. Then we recall that

lim & =00 and lim b =23, with & (23°) =7

t—-+o0 t—-+o0
As z tends to x5°, we have (recalling that o' (x5°) # 0)
V' (25°) -1
V. ~ — —x®) .
This implies that
b'(5°) - , & @ (25°) P2 &1
t)2 2 oo\—1 t /(.00 2 1\-~2 0o 3/2
‘£2| N_a/l(xgo)(l’_mQ ) and $2m_2b (m2 )£1|£§|4 ~ 2 |b/(l’go|1/2 ( 2 —l‘) / :

By integration, we get
th P £ O &~ ot

4.3.2. Analysis of the trajectories in the x1 direction: trapping phenomenon. Let us prove
the following result.

Proposition 4.2. A necessary and sufficient condition for a periodic or an asymptotic tra-

jectory to be trapped is
t

lim - [ dtds =0,
t—T 1 0

where T denotes the (finite) period of the motion along xo in the periodic case, and T' = 400
in the asymptotic case.

Proof. We will study separately the different situations described in the previous section,
namely the case of periodic and asymptotic trajectories in (z2,&2).
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e In the case of a periodic motion in (z2,&;) of period T > 0, the function #} is also periodic,
with the same period. Writing

t 0 ¢ 1 r 4 / t r
i =z —i—/ (Ubs—/ a‘csds>ds—|—/ 3 ds
1 1 ; 1= ; 1 T J, 1

we see that depending on the average of i over [0,T], x} is either a periodic function, or
the sum of a periodic function and a linear function. It follows that trapped trajectories are

T
characterized by the criterion / itdt = 0.
0

e For asymptotic motions, we need to check that
&Y — @y (25°)t is integrable at infinity.
We have indeed
V() (~& +8° +17(ah)
(68 +€5° +b2(ah)?

which, together with the asymptotic expansions of x4 and &, obtained in the previous section,
implies that

iy = i (zh) +

1 = (25°) + O(t?).
It is then clear that the trajectory is trapped if and only if
t

uy(zy°) = tlgglog ; tids =0.

That proves the proposition. O

Now we shall conclude the proof of Theorem 5 by constructing a subset of R* of codimension
one in which all initial data lead to a trapped asymptotic trajectory. As we want to study
trapped asymptotic trajectories, we restrict our attention to the case when 7 = 0, which
is a necessary condition for asymptotic trajectories to be trapped. Extremal points of the
trajectories are then defined in terms of the function

)

Voo (y) = ) b(y)* — &7 -
Let us define /
oy) == — 31((?) —b(y)?*,  yEly el

By definition of y; and yo (see the introduction of this part), one has

li =+ d i = +o0.
Jmo(y) co and  lim  o(y) 00

Let us define N := max (0; }nf [ o(y)) € R4 . For & such that & > N, we then define
Y€ [y1,Y2

h&) = sup {y €] — oo, p2[; o(y) <&} €lyr,val.
We therefore have that

Yy €]h(&1),y2[, v is neither a turning point nor a singular point.
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As h is a decreasing function on | —oo, =V N, all ; €] — 00, =V N| except a countable number
are continuity points. Choose then some &; to be a continuity point of h and 79 €]Jh(&1), yal.
By continuity of h, there exists a neighborhood V' of (#9, ;) such that

v(xgagl) € vag - h(gl) >0.

The set {(z{, &, 29, (o(29) — §%)% ); (29,61,29) € R x V} is a submanifold of R x R* x R?
having codimension 1. Furthermore, for any initial data in this set, we have Zy;—o > 0 and a
simple connexity argument shows that z% is an increasing function of time. In particular we
have x4 — y2 as t — oco. This concludes the proof of Theorem 5. O

5. THE NONLINEAR EQUATION

In this final section we prove that the life span of the nonlinear equation may be bounded
from below uniformly in €. Moreover we check that the solution to the nonlinear equation
remains close, in L?, to the solution of the linear equation. The result is the following, which
deals more generally with the next system, for n > 0:

(5.1) e20,U + A(z,eD,)U + 53+7751(U)£81U + €3+nSQ(U)582U =0, n>0.
The case 7 = 0 corresponds of course to the original system (1.3) presented in the introduction.

Theorem 6 (The nonlinear equation). Let U, o be any initial data bounded in Wf. Then the
following results hold.

(1) The case n = 0:
(a) There exists some T™* > 0 such that the initial value problem (5.1) with n = 0 has
a unique solution Uz on [0, T*[ for any e > 0.
(b) Assume that the solution V. to the linear equation (1.9) satisfies

H5V6‘|L2([O,T*[;L°°) — 0 ase—0.
Then the solution U, to (5.1) with n = 0 satisfies
|Us — VZ|| 2 = 0 uniformly on [0,T%[ as € — 0.

(2) The case n > 0: Le T > 0 be fixed. Then there is €9 > 0 such that for any e < &g, the
equation (5.1) has a unique solution U, on [0,T]. Moreover,

|Us — VZ|| 2 = 0 uniformly on [0,T] as € — 0.

Remark 5.1. The refined L estimate on the linear solution required in result (1b) should
be proved by using

e some generalized WKB expansion for the Rossby waves (on Fourier side near caustics),
together with estimates on Airy functions (note that before the first caustic the WKB
expansion gives immediately the required estimate);

e some stationary phase lemma to estimate the contribution of Poincaré waves.

Depending on the degeneracy of stationary points, we should gain some small power of € due
to the oscillatory behaviour of the integrals.
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Proof of Theorem 6. Extending a result by Dutrifoy, Majda and Schochet [7] obtained in
the particular case when b(x2) = Bz2, we shall prove that there is an operator of principal
symbol (£2 4 €2 +b?)Id which “almost commutes” with A(x,eD,) in the semiclassical regime.
The first step, as in [7], is to perform the following orthogonal change of variable

~ ug + U1 ug — U1
U:_< 9 7u2

V2 V2
in order to produce the generalized creation and annihilation operators
1
Lj: = E(E\aQ F b) .

The system can indeed be rewritten

e?0,U + A(x,eD,)U + 351 (0)e0,U + 2 S2(U)dU = 0

with
3 €101 + €0 0 L,
A(x, €DI) = 0 eu1e0 — €0 L_ + 0(621(1) ,
L_ Ly eu1ed
and
3t — g
—_— 0 0
v2
& 7 Ug — ou1
S1(U) == 0 —_— 0 ,
1( ) 2\/5 ) )
ug — U1
0 0
V2
- Uy + U
U2 0 ~0 1 ~1
and S (U) := 0 T 4o Iul
ug + Uy Uy + U i
4 4 ?
Next, remarking that [e2035 — b?, e0y + b] = +2¢b/ (9o £ b) & £%b”, we introduce the operator
202 — b% + 2¢b’ 0 0
D, := 0 202 — b — 2¢b’ 0
0 0 202 — b*

We notice that D. is a scalar operator at leading order. Moreover one can compute the
commutator [e20? + D., A(z,eD,)]: we find
(5.2) €207 + D, A(w, eD,)] = O(e*(1d — €202 — D,))

meaning that the commutator [20? + D, A(z,eD,)] is of order O(e?) with respect to the
elliptic operator Id — 528% — D.. That implies that the regularity of the solution to the linear

equation
20,V + A(z,eD,)V =0

can be controlled by an application of Gronwall’s lemma: one has

t
e||(Id—£*0f = Do)V (1)]172 < 62!\(165—623%—Ds)VoHinrC&2/ I(Id—20F — De)V (s)|[72ds,
0
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where C' depends on the W2 norms of @; and b, so
|(Id — €83 — DAV (D)3 < C|[(Id — 23} — D)ol 2 <.
Now let us consider the nonlinear equation. Since the extended harmonic oscillator controls

two derivatives in xo, we get a control on the Lipschitz norm of U of the type

C
(5:3) 1€0;U | < ;(HDEUIIL2 + 01U 2 + U1l z2) -

As D. is a scalar differential operator at leading order in €, the antisymmetry of the higher
order nonlinear term is preserved. More precisely, we have, using the Leibniz formula,

e20,D.U + A(x,eD,)D.U + €251 (U)ed DU + £285(U)edy D.U
= —[D., A(z,eD)|U — €385(U)[D-, 85)U — %[ D.., S;(0)]ed;U
as well as
€20, DU + A(x,eD,)D2U + €351 (U)e0, D?U + 355(U)edy D2U = —[D?, A(x,eD,)|U

—£385(U)[D.,e02] DU — £3[De, S;(U))ed; D.U

+D. (~*82(0)[D, 0] — €[, 55(0))=0,0)
and in the same way, for 1 < /£ < 4,

e28,(e01)'U + A(z,eD,) (e81) U + 35,(U) (1)U + £355(U)eda (1) U

l
= —e*> " Ci(e01)'5;(0)e0;(01) T .
k=1

In all cases, the terms of higher order disappear by integration in x and the other terms are
controlled with the following trilinear estimate (writing generically Q(U) for all the nonlin-
earities): forall 0 <k <2and all0 </ <4

| < DEUIDEQ(U) > | + | < (€01)Ul(e01)"Q(U) > |
(5.4) < O)Ulya (I1D2U | 2 + (€81) Ul 2 + 1T £2)?

C ~ - - 3
< = (ID20) g2 + 100 U2 + 10 z2)

1
Remark 5.2. Note that because of the bad embedding inequality [|VU| e~ < —||U|lws, we
6 €

lose one power of €, which seems not to be optimal considering for instance the fast oscillating
ik2$2

functions xo — exp . A challenging question in order to apply semiclassical methods

€
to nonlinear problems is to determine appropriate functional spaces which measures on the one

hand the Sobolev reqularity of the amplitudes, and on the other hand the oscillation frequency.

We are finally able to obtain a uniform life span for the weakly nonlinear system, thus
proving result (la) of Theorem 6. Indeed combining the trilinear estimate (5.4) and the
commutator estimate (5.2), we obtain the following Gronwall inequality

d J ] ¥ ~ - - 3
e’ (HDSUH%Q +1|(e01)* T3 + HUH%Q) < Ce? (1 D20 g2 + [|(£00)4T || 2 + HUHL2>
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from which we deduce the uniform a priori estimate

ID2U72 + (e00) ' Ull72 + 1072 < (Co — Ct)

where Cjy depends only on the initial data. Such an estimate shows that the life span of the
solutions is at least T = Cy/C.

Finally let us consider the approximation by the nonlinear dynamics, and prove results (1b)
and (2) of Theorem 6. The proof of both results relies on standard energy estimates.

If n=0and eV, — 0 in L°°, we use the decomposition
e20,(U. — V&) + Az, eDy) (U — Vi) +3(S;(Uz) — S;(V2)ed;Us 4 €3S;(Ve)ed;U. = 0
and obtain the following L? estimate

ed

5 71U = Vellzz < 3¢°[1€0;Uell b= Ve — Vel|Z2 + 3€°IVell o< [1€0;Ue N 22| Us = Vel 2

< O?(elled;Uelloe + [l€0;Uel72) Ve — Vel + Ce? (e[ Vel 1e)?

from which we conclude by Gronwall’s lemma

t t
U2 — Vel < c/ (lV(s) )2 exp C (/ (elled;Uel| = + \|eajU€|y§2)da) s
0 s

on [0, T*[, and that proves result (1b).

If n > 0, the same arguments show that the life span of the solutions to (5.1) tends to infinity
as € — 0: T. > Ce™", and that these solutions are uniformly bounded in W2 on any finite
time interval. Furthermore, on any finite time interval [0,77], the previous energy estimate
gives

e2 d

= U = Vel2a < CE1)e0,Ul| oo U 3

from which we deduce
t
U = VelRa < Ce [ ellc0 (o) Ue()] .
0

Result (2) of Theorem 6 is proved, and that ends the proof of Theorem 6. O

APPENDIX A. SOME WELL-KNOWN FACTS IN SEMI-CLASSICAL ANALYSIS

In this section we recollect some well-known facts in semi-classical analysis, which have been
used throughout the paper. Most of the material is taken from [6], [14], [22] and [23].

A.1. Semi-classical symbols and operators.
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A.1.1. Definitions. We recall that an order function is any function g € C°(R%; R™\ {0})
such that there is a constant C' satisfying

VX e RY Va e N4, 19%(X)| < Cg(X).

For instance g(z,§) = (1+ |£|2)% =: (£) is an order function. Note that the variable X usually
refers to a point (z, &) in the cotangent space T*R" = R?", or to a point of the type (z,y, &)
with y € R™. A semi-classical symbol in the class S;(g) is then a function a = a(X;¢)
defined on Rdx]O,eo] for some g9 > 0, which depends smoothly on X and such that for
any a € N?, there is a constant C such that [0%a(X, )| < Cg(X) for any (X, ) € R¥x]0, £q].

If (aj)jen is a family of semi-classical symbols in the class Sy(g), we write that
a= Zsjaj + 0(e™)
=0
if for any N € N and for any o € N, there are €y and C such that
N .
VX € R, Ve €]0, ] ‘80‘ (a(X, g) — Zejaj(X, 5))’ < CeNg(X).
j=0

Conversely for any sequence (aj)jen of symbols in S4(g), there is a € Syi(g) (unique up

o0
to O(¢*°)) such that a = Z e/a; +O(e™). An e-pseudodifferential operator is defined as
5=0
follows: if a belongs to Ss,(g), and u is in D(R™), then
1
(2me)n

(9@ ule) == iy [ €0l uty) dyie

A.1.2. Changes of quantization. If a € Sa,(g) and t € [0,1] then a'(z,y, &) := a((1—t)z+ty, )
belongs to S3,,(g), and one defines Op’(a) := Op.(a’). When ¢ = 0 this corresponds to the
classical, or “left” quantization, and when ¢ = 1/2 this is known as the Weyl quantization

1
(and is usually denoted by OpY’ (a) = Op2(a)).

A classical symbol is a symbol a in So,({£)™) such that

ale,€¢) = 3 ay(r,€) + O(c)
7=0

with ap not identically zero, and a; € S2,((£)™) independent of €. The term €”ag is the
principal symbol of the classical pseudo-differential operator A = Op’(a) (and this does
not depend on the quantization). On the other hand a; is the subprincipal symbol of A =
£Op%(a) (in the Weyl quantization only). In the following we shall denote by o;(A) the
symbol of an operator A = OpL(a) (in other words a = 04(A)), and by op(A) its principal
symbol.
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A.1.3. Microlocal support and e-oscillation. If uis an e-dependent function in a ball of L?(R"),
its e-frequency set (or microlocal support) is the complement in R?" of the points (zg, &)
such that there is a function xo € S2,(1) equal to one at (xq, &), satisfying

1OpY (xou) || 2(r2n) = O(™).

We say that an e-dependent function f. bounded in L?(R") is e-oscillatory if for every
continuous, compactly supported function ¢ on R”,

(A.1) limsup/ lpf-(O)Pdé =0 as R — co.
=0 JI§|>R/e
An e-dependent function f. bounded in L?(R") is said to be compact at infinity if
(A.2) limsup/ Ife(x))?dz =0 as R — oco.
e—0 >R

A.1.4. Adjoint and composition. Let a be a symbol in S3,(g), and define a*(z, y,§) := a(y, z, ).
Then the operator (Op,(a))* := Op,(a*) satisfies for all u,v in S(R"),

((0p-(@)"uv) , = (u.(Op-(a))"v)

and is therefore called the formal adjoint of Op.(a). In particular OpY (a) is formally
self-adjoint if a is real. Let a and b be two symbols in Sa,(g1) and Sz, (g2) respectively. For
all t € [0, 1], there is a unique symbol ¢; in Sa,,(g1g2) which allows to obtain Op’(a)oOpt(b) =
OpL(c;). Moreover one has

(A3) ¢z, &e) = ¢€10ude—0nOv] (a((1 = t)x + tu,n)b((1 — t)v + tx,§)) lumvg = a#'b.
n=¢

L2

This can be also written

k
c(z,&e) = Z ;—k'(anav — 858u)k (a((1 = t)x + tu,n)b((1 — t)v + tz, §)) lu=v=z T O(e™).
k>0 ’ n=¢

In particular one has o4(A o B) = 04(A)ot(B) 4+ O(e). Similarly if a and b are two symbols.
Then the principal symbol of Opgv (a)Ong(b) is ab and its subprincipal symbol is %i{a, b}.

A.2. Semiclassical operators, Wigner transforms and propagation of energy. One
of the main interests of the semiclassical setting is that it allows a precise description of the
propagation of the energy, on times of the order of O(g). We refer for instance to [11] (Section
6) for the proof of the following property (actually in the more general setting of matrix-valued
operators): consider a scalar symbol 7.(x, £) defined on R?", belonging to the class S, ({£)7)
for some o € R (or more generally to Sa,(g) ). We assume moreover that Op! (7.) is
essentially skew-self-adjoint on L?(R"). Then consider f0 an e-oscillatory initial data in the
sense of (A.1), bounded in L?(R™) and compact at infinity in the sense of (A.2), and the PDE

e f- + Opgv(Te)fs =0, fe|t:0 = fg
Then the Wigner transform W(t,z,§) of f-(t) defined by

Welta€) = (20" [ e h (o= S0)flat S0y do

2

n
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converges, locally uniformly in ¢, to the solution W of oW + {9, W} = 0 where 7 is the
principal symbol of 7., and where the Poisson bracket is given by

{10, W} :=Verg - VoW = Vyro - VW,
The interest of Wigner transforms lies in particular in the fact that under the assumptions
made on f2, for any compact set K C R" one has / |fo(t, 2) | dz = W.(t, K x R™) due to
K

the fact that |f.(t,z)* = We(t,z,§) d§.
Rn

Finally let us recall that if f € L2(R") of norm 1 is a solution to
op"(p)f =0

where p is a classical symbol of principal part pg, then the microlocal support of f is included
in the chararteristic set

{@.6) e R p(z,€) = 0}

n s(y=a)p _ (y—a)?

A.3. Coherent states. A coherent state is ¢, ,(y) := (7e) 1€’ = e 2= . Any tem-
pered distribution u defined on R"™ may be written

u(y) = (2me) % / Tu(p, 0)®pq(y) dpda,

where T is the F'BI (for Fourier-Bros-lagolnitzer) transform

3n _w—a?

Tu(p,q) := 23(%8)_4/61'@3)'? e 2 u(y) dy.

This transformation maps isometrically L?(R") to L?(R?"). The above formula simply trans-
lates the fact that v = T™Tu.
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