
SEMI-CLASSICAL ANALYSIS OF OCEANIC FLOWS

ISABELLE GALLAGHER

Abstract. In these notes we present results of [5] and [8] in which the propagation of waves
is studied, in a model describing the movement of oceans in large geographical zones. We con-
sider a shallow water flow subject to strong rotation and linearized around an inhomogeneous
stationary profile, and we prove that the underlying system of PDEs can be diagonalized mi-
crolocally: the three linear propagators thus constructed correspond to particular types of
waves, namely two Poincaré and one Rossby wave. We show how Mourre estimates allow to
obtain the dispersion of Poincaré waves; in the case when the stationary profile is zonal we
prove by ODE techniques that for initial data microlocalized in some codimension one set,
Rossby waves are trapped for all times.

1. Introduction

The aim of these notes is to present results of [5] and [8], in which the long time propagation
of waves induced by a rotating, shallow water model is analyzed.

1.1. The model. The ocean is considered in this (toy) model as an incompressible, inviscid
fluid with free surface submitted to gravitation and wind forcing, and we further make the fol-
lowing classical assumptions: we assume that the density of the fluid is homogeneous (meaning
that the density ρ is equal to a constant ρ0), that the pressure law is given by the hydrostatic
approximation p = ρ0gz, and that the motion is essentially horizontal and does not depend
on the vertical coordinate. This leads to the so-called shallow water approximation.

For the sake of simplicity, the effects of the interaction with the boundaries are not discussed
and the model is purely horizontal with the longitude x1 and the latitude x2 both in R.

The evolution of the water height h and velocity v is then governed by the shallow-water
equations with Coriolis force

(1.1)
∂t(ρ0h) +∇ · (ρ0hv) = 0

∂t(ρ0hv) +∇ · (ρ0hv ⊗ v) + ω(ρ0hv)⊥ + ρ0gh∇h = ρ0hτ

where ω denotes the vertical component of the Earth rotation vector Ω, v⊥ := (−v2, v1), g is
the gravity and τ is the stationary forcing responsible for the macroscopic flow. The vertical
component of the Earth rotation is therefore Ω sin(x2/R), where R is the radius of the Earth;
note that it is classical in the physical literature to consider the linearization of ω (known as
the betaplane approximation) ω(x2) = Ωx2/R. We consider general functions ω in the sequel,
with some restrictions that are made precise later.
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2 I. GALLAGHER

We consider small fluctuations (η, u) around the stationary solution (h̄, v̄) satisfying

h̄ = constant, ∇ · (v̄ ⊗ v̄) + ωv̄⊥ = τ, div v̄ = 0 .

Let us adimensionalize the previous system. We define b := ω/|Ω|, and we consider typical
time, length and velocity scales t0 ∼ 106 s (∼ 0, 38 months), `0 ∼ 104 km and v0 ∼ 0.1ms−1.
We also consider typical height and velocity fluctuations δh = (h − h̄)/η ∼ 1 m and u =
(v − v̄)/v0 = v/v0 − ū. Finally we define a small parameter ε ∼ 10−1 (actually of the

size of Fr2 and Ro
1
2 where Fr is the Froude number and Ro the Rossby number, measuring

respectively the influence of gravity and of the Coriolis force). After some computations we
come up with the following system:

(1.2)
∂tη +

1

ε
∇ · u+ ū · ∇η + ε2∇ · (ηu) = 0 ,

∂tu+
1

ε2
bu⊥ +

1

ε
∇η + ū · ∇u+ u · ∇ū+ ε2u · ∇u = 0 .

Defining the sound speed u0 by

η =
[
(1 + ε3u0/2)2 − 1

]
/ε3 ,

we obtain that (1.2) is equivalent to

(1.3) ε2∂tU +A(x, εD, ε)U + ε3Q(U) = 0 , U = (u0, u1, u2)

where A(x, εD, ε) is the linear propagator

(1.4) A(x, εD, ε) := i

εū · ε∇ ε∂1 ε∂2

ε∂1 εū · ε∇+ ε2∂1ū1 −b+ ε2∂2ū1

ε∂2 b+ ε2∂1ū2 εū · ε∇+ ε2∂2ū2


and Q(U) := S1(U)ε∂1U + S2(U)ε∂2U with

(1.5) S1(U) :=

 u1
1
2u0 0

1
2u0 u1 0
0 0 u1

 and S2(U) :=

 u2 0 1
2u0

0 u2 0
1
2u0 0 u2

 .

We shall assume throughout the paper that b is smooth, with a symbol-like behaviour: for
all α ∈ N, there is a constant Cα such that for all x2 ∈ R,

(1.6) |b(α)(x2)| ≤ Cα
(
1 + b2(x2)

) 1
2 .

We shall further assume that

lim
|x2|→∞

b2(x2) =∞,

and that b2 has only non degenerate critical points. We shall also assume that ū is a smooth,
compactly supported function.

We shall finally suppose that the initial data is microlocalized (see Appendix A for definitions)
in some compact set C of T ∗R2 satisfying

(1.7) C ∩ {ξ1 = 0} = ∅ .

In the following, to simplify some formulations, we shall denote by (µ)Supp?f the projection of
the (micro)support of f onto the ? = 0 axis, where ? represents an element of {x1, x2, ξ1, ξ2}.
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Because of the specific form of the initial data, involving fast oscillations with respect to x,
we introduce semi-classical Sobolev spaces

Hs
ε = {U ∈ L2 / ‖U‖Hs

ε
< +∞} with ‖U‖2Hs

ε
=
∑
|k|≤s

‖(ε∇)kU‖2L2 .

A classical result based on the Sobolev embedding

‖ε∇U‖L∞ ≤
C

ε
‖∇U‖Hs

ε
for any s > 1 ,

implies that (1.2) has a unique local solution Uε ∈ L∞([0, Tε), H
s+1
ε ). Note that the life span

of Uε depends a priori on ε. One of the results proved in these notes is existence on an ε-
independent time interval (see Theorem 6 in Section 5), assuming the initial data is bounded
in a weighted semi-classical Sobolev space, adapted to the linear propagator (in the spirit
of [7]):

(1.8) W s
ε :=

{
f ∈ L2(R2) / (1− ε2∂2

1)
s
2 (1− ε2∂2

2 + b2(x2))
s
2 f ∈ L2(R2)

}
.

But most of the analysis will actually be carried out on the linear system

(1.9) ε2∂tV +A(x, εD, ε)V = 0 .

The structure of these notes is the following.

• In Section 2 we prove an abstract diagonalization result (Theorem 2) on systems of
the form (1.9), when the principal symbol matrix of A(x, εD, ε) is diagonalizable with
eigenvalues which do not cross. We apply the general result to the specific case of (1.4),
which allows to compute Poincaré and Rossby operators (Theorem 1).
• In Section 3 we prove that Poincaré waves exit any compact set for any positive time

(Theorem 3). The proof relies on Mourre estimates. We also provide a different proof
in the case when ū is a shear flow, which relies on a semi-explicit representation of
the solution. Though less general than the first one, we feel this proof can have some
interest in nonlinear applications for instance, due to its more explicit form.
• Section 4 is devoted to the study of Rossby waves. It is proved that Rossby waves

stay confined for all times in the latitude (x2) direction (Theorem 4). In the longi-
tude (x1) direction such a result is only obtained in the special case of a shear flow
(see Theorem 5). To prove the result we study the integral curves of the associated
Hamiltonian.
• Finally in Section 5 we prove that the life span of the nonlinear system (1.3) is uni-

formly bounded from below, and check that the nonlinear solution stays close to the
linear one. The method relies on the construction of almost commuting vector fields,
which is possible here due to the semi-classical nature of the problem. That explains
the introduction of W s

ε in (1.8).
• We have gathered in an appendix all useful results in microlocal and semiclassical

analysis. The reader is invited to consult the appendix for definitions and notations
used throughout the text.

Remark 1.1. We study here a very particular situation when the initial data is localized
in a very small region of space, and has a compact frequency support – this allows to apply
semi-classical methods and have an effective way of studying the propagation of waves. Note
that many studies have been devoted to other situations where the initial data does not present
such localization properties. We refer for instance to [1], [2], [3], [4], [7], [9], [10], [17], [18],
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[19] and the references therein for such studies in the context of rotating fluids. We refer also
to [15], [16], [20], and [21] for references in the Phyiscal litterature.

2. Diagonalization

2.1. Statement of the theorem. In this section we shall prove the following result.

Theorem 1 (Rossby and Poincaré propagators). Let vε,0 be a family of initial data, microlo-
calized in a compact set C satisfying Assumption (1.7). For any parameter ε > 0, denote by vε
the associate solution to (1.9). Then for all t ≥ 0 one can write vε(t) as the sum of a “Rossby”
vector field and two “Poincaré” vector fields: vε(t) = vRε (t) + v+

ε (t) + v−ε (t), satisfying linear
equations

iε∂tv
R
ε = TRvRε , iε2∂tv

±
ε = T±v±ε ,

where the principal symbol of each operator is given by

σp(TR) =
ξ1b
′

ξ2
1 + ξ2

2 + b2(x2)
+ ū · ξ and σp(T±) = ±

√
ξ2

1 + ξ2
2 + b2(x2) .

This theorem is a consequence of general diagonalization result stated and proved in the
coming paragraph.

2.2. A general diagonalization theorem.

Theorem 2 (Diagonalization). Let K be a compact subset of R2d, and consider a N × N
hermitian pseudodifferential matrix Aε = A(x, εD, ε), supported in K. Assume that

• the (matrix) principal symbol of A(x, εD, 0), denoted by A0, is diagonalizable, in the
sense that there are some unitary and diagonal matrices of symbols, U and D, such
that U−1A0 U = D ,
• the eigenvalues (δ1(x, ξ), . . . , δN (x, ξ)) satisfy

(2.1) ∀i 6= j, inf
(x,ξ)∈K

|δi(x, ξ)− δj(x, ξ)| ≥ C > 0 .

Then there exists a family of unitary and diagonal pseudodifferential operators Vε and Dε

supported in K, such that:

(2.2) V ∗ε AεVε = Dε +O(ε∞), V ∗ε Vε = I +O(ε∞) .

Moreover one has

(2.3) Dε = D0 + εD1 +O(ε2) ,

where D0 = OpWε (D) and the principal symbol of D1 is given by

D1 = σp(D1) = diag

(
σp
(
∆̃1 −

D0I1 + I1D0

2

))
with the notations

(2.4) ∆̃1 =
1

ε

(
OpWε (U∗)AεOpWε (U)−D0

)
, I1 =

1

ε

(
OpWε (U∗)OpWε (U)− I

)
.
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More explicitly, let us denote by aij(x, ξ) the matrix elements of A1, subsymbol of A(x, εD, ε)
defined by A1 := σp (∂εA) and by unj(x, ξ), j = 1 . . . d, the coordinates of any unit eigenvector
of A0(x, ξ) of eigenvalue δn(x, ξ). We have
(2.5)

(D1)nn =
∑

j,k=1...d

(
= (ujn{ajk, ukn}) +

ajk{ujn, ukn}
2i

)
+ (U∗A1U)nn) +

1

2i

d∑
j=1

δn{ujn, ujn},

where {f, g} := ∇ξf∇xg −∇xf∇ξg is the Poisson bracket on T ∗Rd.

Here and in all the sequel, we say that a pseudo-differential operator V is unitary if it satisfies

V ∗V = I +O(ε∞).

The proof is presented below: we only give the formal construction and we leave it to the
reader to check that the symbols of the various operators formally constructed are indeed
symbols. Section 2.3 is devoted to the case of the matrix given by (1.4).

The proof of Theorem 2 is a combination of semiclassical and perturbation methods. Let us
start by defining U0 := OpWε (U) . Elementary properties of the Weyl quantization imply then
that

U∗0AεU0 = D0 +O(ε) .

The following lemma shows that one can construct a unitary pseudodifferential operator U∞
such that

U∗∞AεU∞ = D0 +O(ε) .

Lemma 2.1. Let U be a pseudodifferential matrix such that U∗U = I + εI1, where I is the

identity. Then one can find V ∼
∞∑
k=0

εkVk such that (U + εV )∗(U + εV ) = I +O(ε∞) .

Proof. Let us denote V0 := −1

2
UI1. On easily checks that (U + εV0)∗(U + εV0) = I +O(ε2).

Indeed

(U + εV0)∗(U + εV0) = U∗U − ε

2
(I1U

∗U + U∗UI1) +O(ε2)

= I + εI1 − εI1 +O(ε2) .

Then one concludes by iteration. �

That lemma allows to define the pseudo-differential operator of (semiclassical) order 0

∆1 =
1

ε
(U∗∞AεU∞ −D0) ,

where U∞ is a unitary operator. Now our aim is to find a unitary operator V∞ (up to O(ε∞))
such that

(U∞V∞)∗Aε(U∞V∞) = D∞ +O(ε∞) ,

where D∞ = D0+εD1+. . . is a diagonal matrix satisfying the conclusions of the theorem. We
shall write V∞ = eiεW , with W selfadjoint (so V∞ thus constructed is automatically unitary).
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We look for W under the form W ∼
∞∑
0

εkWk, and compute the Wk recursively. Since

V ∗∞(D0 + ε∆1)V∞ = (D0 + ε∆1) + iε[(D0 + ε∆1),W ] +
(iε)2

2
[[(D0 + ε∆1),W ],W ] + . . .

we see that, if W1 satisfies

(2.6) i[D0,W1] + ∆1 = D1 +O(ε), D1 diagonal ,

then we have that

(2.7) e−iεW1(D0 + ε∆1)eiεW1 = D0 + εD1 + ε2∆2 ,

where ∆2 is a zero order pseudodifferential operator. The following lemma is a typical normal
form type result, and is crucial for the following.

Lemma 2.2. Let D0 be a diagonal pseudodifferential matrix whose principal symbol D0 has
a spectrum satisfying (2.1) and let ∆1 be a pseudodifferential matrix. Then there exist two
pseudodifferential matrices W and D1, with D1 diagonal, such that:

(2.8) [D0,W ] + ∆1 = D1 + ε∆̃2 ,

where ∆̃2 is a pseudodifferential matrix of order 0. Moreover the principal symbol of D1 is
the diagonal part of the principal symbol of ∆1: we have σp(D1) = diagσp(∆1).

Proof. By the non degeneracy condition of the spectrum of D0 we find that there exists a
matrix W0 and a diagonal one D1 such that [D0,W0] +D1,0 = D1 , where D1,0 is the principal
symbol of ∆1. Indeed it is enough to take D1 as the diagonal part of D1,0 and

(2.9) (W0(x, ξ))i,j =
(D1,0(x, ξ))i,j

δi(x, ξ)− δj(x, ξ)
and notice that the Weyl quantization of W0 satisfies (2.8). The lemma is proved. �

By Lemma 2.2 we know that there exists W1 satisfying (2.6). Writing

e−iεW1(D0 + ε∆1)eiεW1 = D0 + ε(∆1 + [D0,W1]) + ε2(∆2 − ∆̃2),

we get immediately (2.7). It is easy to get convinced that all the Wk will satisfy recursively
an equation of the form [D0,Wk] + ∆k = Dk +O(ε) , which can be solved by Lemma 2.2. In
order to derive (2.5) we have to compute the subprincipal symbol of the diagonal part of the
right-hand side of (2.4), that is, for each n = 1 . . . d,∑

jk

OpWε (Ujn)OpWε ((A0 + εA1)jk)OpWε (Ukn)− 1

2i

d∑
j=1

δn{ujn, ujn} ,

since U is unitary. The term εA1 is obviously responsible for the second term in the right-hand
side of (2.5). Using the distributivity of the Poisson bracket, we get the following expression
for the first one: ∑

jk

1

2i

(
{Ujn, (A0)jkUkn}+ Ujn{(A0)jk,Ukn}

)
=
∑
jk

1

2i

(
Ujn{(A0)jk,Ukn}+ (A0)jk{Ujn,Ukn}+ Ukn{Ujn, (A0)jk}

)
.
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Interverting j and k in half of the terms and noticing that, since A0 is Hermitian, (A0)jk =

(A0)kj , we get easily (2.5).

2.3. The Rossby-Poincaré case. In the case of oceanic waves we compute

A0(x, ξ) :=

 0 ξ1 ξ2

ξ1 0 −ib
ξ2 ib 0

 and A1(x, ξ) :=

ū · ξ 0 0
0 ū · ξ 0
0 0 ū · ξ

 .

A straightforward computation shows that the spectrum of A0 is{
0,
√
ξ2

1 + ξ2
2 + b2(x2),−

√
ξ2

1 + ξ2
2 + b2(x2)

}
.

2.3.1. Microlocalization. The three eigenvalues of A0 are separated if and only if

ξ2
1 + ξ2

2 + b2(x2) 6= 0.

Therefore, considering a compact subset K of R4 such that

K ∩ {(x1, x2, ξ1, ξ2) / ξ2
1 + ξ2

2 + b2(x2) = 0} = ∅

ensures that

• the eigenvalues do not cross, so that it is possible to get a unitary diagonalizing matrix
with regular entries;
• the non degeneracy condition (2.1) is satisfied.

In other words, A(x, εD, ε) satisfies the assumptions of Theorem 2 provided that one considers
only its action on vector fields which are suitably microlocalized. We assume of course that this
microlocalization condition is satisfied by the initial datum, or actually the more restrictive
condition (1.7). Furthermore, we shall prove in the next two sections that the propagation by
the scalar operators T± and TR (to be defined now) preserves this suitable microlocalization,
thus justifying a posteriori the diagonalization procedure for all times.

2.3.2. Computation of the Poincaré and Rossby Hamiltonians. The above computations show
that one can define the two Poincaré Hamiltonians as follows:

τ± := ±
√
ξ2

1 + ξ2
2 + b2(x2)

and we shall denote the associate operator constructed via Theorem 2 by T±.

Now let us consider the Rossby Hamiltonian. In all this paragraph, for the sake of readability,
we shall denote

〈ξ〉b :=
√
ξ2

1 + ξ2
2 + b2(x2) .

An easy computation shows that a (normalized) eigenvector of A0(x, ξ) of zero eigenvalue is

u0 =
1

〈ξ〉b

 b
iξ2

−iξ1

 .
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By Theorem 2, the Rossby Hamiltonian is then given by the formula

(2.10) τR =
∑

j,k=1...3

(
= (uj0{ajk, uk0}) +

ajk{uj0, uk0}
2i

)
+

∑
j,k=1...3

(A1)jkuj0uk0 .

The contribution of the first term in the parenthesis in (2.10) is∑
j,k=1...3

(uj0{ajk, uk0})

=
b

〈ξ〉b

{
ξ2,
−iξ1

〈ξ〉b

}
+

iξ2

〈ξ〉b

{
ib,
−iξ1

〈ξ〉b

}
+

iξ1

〈ξ〉b

({
ξ2,

b

〈ξ〉b

}
+

{
ib,

iξ2

〈ξ〉b

})
=
−ibξ1

〈ξ〉b
∂x2

1

〈ξ〉b
− iξ2ξ1b

′

〈ξ〉b
∂ξ2

1

〈ξ〉b
+

iξ1

〈ξ〉b
∂x2

b

〈ξ〉b
+
iξ1b

′

〈ξ〉b
∂ξ2

ξ2

〈ξ〉b

=
2iξ1b

′

〈ξ〉2b
·

Using the distributivity of the Poisson brackets, we get the contribution of the second term
in a very similar way∑
j,k=1...3

ajk{uj0, uk0}
2

= ξ1

{
b

〈ξ〉b
,
iξ2

〈ξ〉b

}
− ξ2

{
b

〈ξ〉b
,
iξ1

〈ξ〉b

}
+ ib

{
iξ1

〈ξ〉b
,
iξ2

〈ξ〉b

}
= ξ1

(
ib

〈ξ〉b

{
1

〈ξ〉b
, ξ2

}
+

iξ2

〈ξ〉b

{
b,

1

ξb

}
+

i

〈ξ〉2b
{b, ξ2}

)
− iξ2ξ1

〈ξ〉b

{
b,

1

〈ξ〉b

}
− ibξ1

〈ξ〉b

{
1

〈ξ〉b
, ξ2

}
=
−ib′ξ1

〈ξ〉2b
·

The computation of the second term of the right hand side of (2.10) is trivial since A1 is a
multiple of the identity. Adding the two previous expressions we get finally

τR =
ξ1b
′

ξ2
1 + ξ2

2 + b(x2)2
+ ū · ξ

and the associate operator will be denoted by TR.

Remark 2.3. Since the elementary steps of the diagonalization process use only multiplica-
tions, computations of subprincipal symbols and solving normal form equations, all the sub-
symbols of TR and T± depend on x1 only through ū and its derivatives.

3. Dispersion of Poincaré waves

The goal of this section is to prove the following result.

Theorem 3 (Dispersion of Poincaré waves). Let vε,0 be a family of initial data, microlocalized
in a compact set C satisfying Assumption (1.7). For any parameter ε > 0, denote by vPε the
Poincaré component of the solution vε to (1.9) constructed in Theorem 1. Then for any
compact set Ω in R2, one has

∀t > 0, ‖vPε (t)‖L2(Ω) = O(ε∞) .
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In Theorem 1 we constructed two linear operators, called T±, whose principal symbols are

τ± = ±
√
ξ2

1 + ξ2
2 + b2(x2) .

We now want to study the propagation equation associated to those operators, namely the
linear equation in R×R2

(3.1) iε2∂tϕ± = T±ϕ±, ϕ±|t=0 = ϕ0
±

where ϕ0
± are microlocalized in a compact set C satisfying Assumption (1.7). Before studying

that equation we need to check that it makes sense, since a priori T± is only defined on vector
fields microlocalized on such a compact set. This is achieved in the coming section, where we
check that the separation of eigenvalues (2.1) required in the statement of Theorem 2 holds

because
√
ξ2

1 + ξ2
2 + b2(x2) remains bounded away from zero during the propagation.

Then we shall show that the solutions to these equations exit any compact set in finite time.

3.1. Microlocalization. Let us prove the following result, which allows to make sense of
Equation (3.1) for all times.

Proposition 3.1. Under the assumptions of Theorem 3, the operators T± are self-adjoint,

and the function ϕ(t) = ei
t
ε2
T±ϕ0

± are such that µSuppϕ±(t) satisfies (1.7) for all times.

Proof. The proof of that result relies on a spectral argument. Due to the form of the principal
symbols of T± recalled above, the operators T± are self-adjoint and for each fixed ξ1 have
discrete spectrum. We can therefore define two families (ψ±n,µ)n∈N,µ∈R of pseudo-eigenvectors

of T± in L2(R2) and eigenvalues λ±n,µ such that if the initial data writes

ϕ0
±(x) =

∫ ∑
n

c±,0n,µψ
±
n,µ(x) dµ ,

then

ϕ±(t, x) =

∫ ∑
n

ei
λ±n,µt
ε2 c±,0n,µψ

±
n,µ(x) dµ .

Since the eigenfunctions ψ±n are microlocalized on the energy surfaces of the Poincaré Hamil-
tonians, the result follows. �

3.2. Dispersion. In this paragraph we shall prove the dispersion result. The strategy is the
following. In Section 3.2.1 we prove using semi-classical analysis that for a very short time,
the solutions to (3.1) remain microlocalized in a compact set satisfying assumption (1.7), and
such that µSuppx1ϕ± become disjoint from Suppx1 ū. Section 3.2.2 is then devoted to the
long-time behaviour of the solution, and Mourre estimates allow to prove that the solution
exits any compact set after some time, and that it remains microlocalized far from ξ1 = 0.
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3.2.1. Short time behaviour. The aim of this paragraph is to prove the following result. It
shows that the solutions of (3.1) exit the support of ū after a time texitε, for |texit| large
enough (independent of ε). We only state the forward in time result: the backwards result is
identical, up to changing the sign of time. We shall further restrict the analysis to T+ since
the argument for T− is identical, up to some sign changes.

Proposition 3.2. Let ϕ0 be a function, microlocalized in a compact set C satisfying As-
sumption (1.7) and let ϕ be the associate solution of (3.1). Let [u−, u+] be a closed interval
of R containing Suppx1 ū. There exists a constant texit > 0 such that for any ε ∈]0, 1[, the
function ϕ(εtexit, ·) is microlocalized in a compact set K such that the projection of K onto
the x1-axis does not interesect [u−, u+]. Moreover µSuppξ1ϕ is unchanged. More precisely,

if µSuppξ1ϕ
0 ⊂ R+ \ {0}, then µSuppx1ϕ(εtexit, ·) ⊂]u+,+∞[, and if µSuppξ1ϕ

0 ⊂ R− \ {0},
then µSuppx1ϕ(εtexit, ·) ⊂]−∞, u−[.

Proof. Define the function ψ(s) := ϕ(εs). Then (3.1) reads

(3.2) iε∂sψ = T+ψ, ψ|s=0 = ϕ0 ,

and any result proved on ψ on [0, T ] will yield the same result for ϕ on [0, T ε]. Notice
that (3.2) is written in a semi-classical setting, so by the propagation of the microsupport
theorem, the microsupport of ψ is propagated by the bicharacteristics, which are the integral
curves of the principal symbol. The bicharacteristics are given by the following set of ODEs:{

ẋt = ∇ξτ+(ξt1, x
t
2, ξ

t
2), x0 = (x0

1, x
0
2)

ξ̇t = −∇xτ+(ξt1, x
t
2, ξ

t
2), ξ0 = (ξ0

1 , ξ
0
2) .

Notice that τ+ is independent of x1, so ξ̇t1 is identically zero and therefore ξt1 ≡ ξ0
1 . So for

all s ≥ 0, the microlocal support in ξ1 of ψ(s) remains unchanged, and in particular is far
from ξ1 = 0. Moreover one has

ẋt1 =
ξ0

1√
(ξ0

1)2 + (ξt2)2 + b2(xt2)
·

Now we recall that the bicharacteristic curves lie on energy surfaces, meaning that on each
bicharacteristic, τ+(ξ0

1 , x
t
2, ξ

t
2) is a constant. That implies that (ξt2)2 + b2(xt2) is a constant on

each bicharacteristic, so that for all times,

ẋt1 ≡
ξ0

1√
(ξ0

1)2 + (ξ0
2)2 + b2(x0

2)
·

If ξ0
1 > 0, then x1 is propagated to the right and eventually escapes to the right of the support

in x1 of ū, whereas if ξ0
1 < 0, the converse (to the left) occurs. Proposition 3.2 is proved. �

3.2.2. Long time behaviour. The aim of this paragraph is to prove the following result, which
again is only proved for positive times for simplicity.

Proposition 3.3. Under the assumptions of Proposition 3.2, let ϕ+ be the solution of (3.1)
associated with the data ϕ(εtexit, ·). Then µSuppx1ϕ

+(t) does not intersect Suppx1 ū for t ≥
εtexit, and µSuppξ1ϕ

+(t) remains unchanged for t ≥ εtexit. Finally µSuppx1ϕ
+(t) exits any

compact set in x1 as soon as t > εtexit.
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Proof. Before going into the proof, we shall simplify the analysis by only studying the case
of T+ (the case T− is obtained by identical arguments), and we shall only deal with the case
when the support in ξ1 of the data lies in the positive half space. The other case is obtained
similarly.

The proof is based on Mourre’s theory which we shall now briefly recall, and we refer to [13]
and [12] for all details. Let us consider two self-adjoint operators H and A on a Hilbert
space H. We make the following assumptions:

(1) the intersection of the domains of A and H is dense in the domain D(H) of H .
(2) t 7→ eitA maps D(H) to itself, and for all ϕ0 ∈ D(H),

sup
t∈[0,1]

‖HeitAϕ0‖ <∞ .

(3) The operator i[H,A] is bounded from below and closable, and the domain D(B1)
where iB1 is its closure, contains D(H). More generally for all n ∈ N the opera-
tor i[iBn, A] is bounded from below and closable and the domain D(Bn+1) of its clo-
sure iBn+1 contains D(H), and finally Bn+1 extends to a bounded operator from D(H)
to its dual.

(4) There exists θ > 0 and an open interval ∆ of R such that if E∆ is the corresponding
spectral projection of H, then

(3.3) E∆i[H,A]E∆ ≥ θE∆ .

Note that Assumptions (1 - 3) can be replaced by the fact that [f(H), A] and all commutator
iterates are bounded for any smooth, compactly supported function f (see [12]).

Under those assumptions, for any integer m ∈ N and for any θ′ ∈]0, θ[, there is a constant C
such that

‖χ−(A− a− θ′t)e−iHtg(H)χ+(A− a)‖ ≤ Ct−m

where χ± is the characteristic function of R±, g is any smooth compactly supported function
in ∆, and the above bound is uniform in a ∈ R.

Let us apply this theory to our situation. We consider equation (3.1) with data ei
texit
ε
T+ϕ0

+,
and let us define the operator T 0

+ as the operator T+ where ū has been chosen identically zero.
We shall start by studying the equation

(3.4) iε2∂tϕ̃ = T 0
+ϕ̃, ϕ̃|t=εtexit = ei

texit
ε
T+ϕ0

+ ,

for which we shall prove Proposition 3.3. Then we shall prove that the solution ϕ̃ actually

solves the original equation (3.1) with the same data ei
texit
ε
T+ϕ0

+ at t = εtexit up to O(ε∞),
because its support in x1 lies outside the support of ū and because the symbolic expansion
of T+ depends on x1 only through ū and its derivatives (see Remark 2.3).

So let us start by applying Mourre’s theory to (3.4). Let us write the projection of K onto
the ξ1-axis as included in [d0, d1] with 0 < d0 < d1 < ∞. We recall that on the support

of ei
texit
ε
T+ϕ0

+, x1 remains to the right of the support of ū. Then we apply the theory toH = T 0
+

and to A = x1 (the pointwise multiplication). Assumptions (1) to (3) are easy to check, in
particular because this is a semiclassical setting, so only the principal symbols need to be



12 I. GALLAGHER

considered. Similarly finding a lower bound for E∆i[T
0
+, x1]E∆ boils down to computing the

Poisson bracket {τ+, x1} and one finds

(3.5) {τ+, x1} =
ξ1√

ξ2
1 + ξ2

2 + b2(x2)
·

Since T 0
+ has constant coefficients in x1, ξ1 is preserved, so in particular for all times one

has µSuppξ1ϕ̃(t) ⊂ [d0, d1]. One can furthermore choose for ∆ an interval of R of the
type ]D0, D1[ where the constants D0 and D1 are chosen so that for any (x, ξ) ∈ K, one
has

(3.6) D0 <
√
ξ2

1 + ξ2
2 + b2(x2) < D1 .

As the microlocal supports of the eigenfunctions of T 0
+ lie on energy surfaces, we know that

the solution to (3.4) will remain in E∆ for all times. Now let us apply the results of [13]
and [12]. By (3.5), (3.6) and the assumption on ξ1 written above, we have that

E∆i[H,A]E∆ ≥ ε
d0

D1
E∆ ,

so (3.3) holds with θ = εd0/D1. It follows that the solution ei
(t−εtexit)

ε2
T 0
+
(
ei
texit
ε
T+ϕ0

+

)
to (3.4)

has a support in x1 such that

x1 > u+ +
d0

D1

t

ε
which proves the result for (3.4).

Since µSuppx1e
i
(t−εtexit)

ε2
T 0
+
(
ei
texit
ε
T+ϕ0

+

)
does not cross Suppx1 ū, one has actually

ei
(t−εtexit)

ε2
T 0
+
(
ei
texit
ε
T+ϕ0

+

)
= ei

(t−εtexit)
ε2

T+
(
ei
texit
ε
T+ϕ0

+

)
in L2

locally uniformly in t, due to the following lemma. The proposition follows. �

Lemma 3.4. Let Aε and Ãε be two pseudo-differential operators such that

• iAε is hermitian in L2(Rd),

• Aε − Ãε = O(ε∞) microlocally on Ω ⊂ R2d.

Let ϕ̃ be a solution to i∂tϕ̃+Ãεϕ̃ = 0 microlocalized in Ω, and ϕ the solution to i∂tϕ+Aεϕ = 0
with the same initial data. Then, for all N ∈ N,

sup
t≤ε−N

‖ϕ(t)− ϕ̃(t)‖L2(Rd) = O(ε∞) .

Proof. The proof is based on a simple energy inequality and is completely straightforward.
We have

d

dt
‖ϕ− ϕ̃‖2L2(Rd) = 2〈iAεϕ− iÃεϕ̃|ϕ− ϕ̃〉

= 2〈(iAε − iÃε)ϕ̃|ϕ− ϕ̃〉

≤ 2‖(Aε − Ãε)ϕ̃‖L2(Rd)‖ϕ− ϕ̃‖L2(Rd) .

This leads to
‖ϕ(t)− ϕ̃(t)‖2L2(Rd) = O(ε∞)t ,

which concludes the proof. �
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3.3. An alternate proof. In the case when b2 has at most one, non degenerate critical point,
one can use a more direct, semi-explicit method to obtain the result. The first step consists in
taking the Fourier transform in x1 (recalling that the problem is invariant by translations in
the x1 direction). We also recall that the data is microlocalized on a compact set C such that ξ1

is bounded away from zero. Since τ± = ±
√
ξ2

2 + b2(x2) + ξ2
1 , functional calculus implies that

one can find classical pseudo-differential operators H±(ξ1) of principal symbols ξ2
2 + b2(x2)

such that T± = ±
√
H±(ξ1) + ξ2

1 . Let us now call λk±(ξ1) and ϕk±(ξ1;x2) the eigenvalues and
eigenfunctions of H±(ξ1). We refer to [5] for a proof of the following proposition.

Proposition 3.5. Let φ be an eigenfunction of H±(ξ1), microlocalized on an energy surface
which interstects C. Then φ and its associate eigenvalue λ are C∞ functions of ξ1. More-
over 1

ε∂ξ1λ is bounded on compact sets in ξ1.

Let us now carry out this program. We consider an initial data denoted ϕ0, microlocalized
in C. One can take the Fourier transform in x1 which gives

ϕ0(x) =
1√
2πε

∫
ϕ̂0(ξ1, x2)e−i

x1ξ1
ε dξ1 .

Now let us consider a coherent state (in Fourier variables) at (q, p) (see Appendix A), that is:

(3.7) ϕqp(ξ1) :=
1

(πε)
1
4

ei
ξ1q
ε e−

(ξ1−p)
2

2ε .

After decomposition onto coherent states we get

ϕ0(x) =
1√
2πε

1

(πε)
1
4

∫
ϕ̃0(q, p, x2)ei

ξ1(q−x1)
ε e−

(ξ1−p)
2

2ε dqdpdξ1

where ϕ̃0(q, p, x2) :=
(
ϕqp|ϕ̂0(·, x2)

)
L2 . We notice that the integral over p and q is, mod-

ulo O(ε∞), on a compact domain due to the microlocalization assumption on ϕ0. Finally
decomposing onto the eigenfunctions ϕk±(ξ1;x2) gives

ϕ0(x) =
1√
2πε

1

(πε)
1
4

∑
k

∫
ϕ0(q, p; k, ξ1)ϕk±(ξ1;x2)ei

ξ1(q−x1)
ε e−

(ξ1−p)
2

2ε dqdpdξ1

where ϕ0(q, p; k, ξ1) :=
(
ϕk±(ξ1; ·)|ϕ̃0(q, p, ·)

)
L2
. Note that the dependence of ϕ0 on ξ1 is only

through the eigenfunction ϕk±, so ϕ0 depends smoothly on ξ1, as stated in Proposition 3.5.

The sum over k contains O(ε−1) terms, due to the fact that λk±(ξ1) remains in a finite interval
(this can be seen in the proof of Proposition 3.5 in [5]). Now it remains to propagate at time
t/ε2 this initial data, which gives rise to the following expression:

1√
2πε

1

(πε)
1
4

∑
k

∫
ϕ0(q, p; k, ξ1)ϕk±(ξ1;x2)ei

ξ1(q−x1)
ε e−

(ξ1−p)
2

2ε e±i(λ
k
±(ξ1)+ξ21)

1
2 t
ε2 dqdpdξ1 .

The stationary phase lemma then gives that this integral is O(ε∞) except if there exists a
stationary point, given by the conditions:

ξ1 = p and ε(x1 − q)±
2ξ1 + ∂ξ1λ

k
±(ξ1)

2
√
λk±(ξ1) + ξ2

1

t = 0 .
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The second condition gives

2
√
λk±(ξ1) + ξ2

1(x1 − q) = ∓1

ε

(
2p+ ∂ξ1λ

k
±(ξ1)

)
t .

Therefore, since p 6= 0 and the λk± ’s are bounded, with ∂ξ1λ
k
±(ξ1) = O(ε), there is no critical

point for x1 in a compact set. Proposition 3.5 therefore allows to apply the stationary phase
lemma and to conclude the proof of Theorem 3. Notice that the (fixed) losses in ε (namely
the negative powers of ε appearing in the integrals and the number of k’s in the sum) are
compensated by the fact that the result is O(ε∞); it is important at this point that as noticed
above, the function ϕ0 depends smoothly on ξ1.

4. Trapping of Rossby waves

In this section we shall prove that Rossby waves are trapped if the initial data is correctly
microlocalized. Recall that the Rossby projection vRε of the solution vε to (1.9) satisfies the
equation

(4.1)

{
iε∂tϕ = TRϕ
ϕ|t=0 = ϕ0 ,

σP (TR) = τR =
ξ1b
′

ξ2
1 + ξ2

2 + b(x2)2
+ ū · ξ .

The first point one must check is that the solution to that equation remains microlocalized in
a set satisfying the separation condition ξ2

1 + ξ2
2 + b(x2)2 6= 0. This is performed in the next

Section 4.1.

In the case of a general ū we are only able to prove trapping in the latitude direction. The
result is the following.

Theorem 4 (Trapping in the latitude direction). Let vε,0 be a family of initial data, mi-
crolocalized in a compact set C satisfying Assumption (1.7). For any parameter ε > 0, denote
by vRε the Rossby component of the solution vε to (1.9) constructed in Theorem 1. Then there
is a compact set K2 of R such that

∀t ≥ 0, µSuppx2v
R
ε (t) ⊂ K2 .

In the case when ū is a shear flow, ū = (ū1(x2), 0), the analysis can be made more precise. We
assume in the following that there are two points y1 6= y2 in R such that ū1(y1) = ū1(y2) = 0,
and for instance that ū1 < 0 on ]y1, y2[. We also assume that b does not change sign on ]y1, y2[.
We prove the following result.

Theorem 5 (Trapping in the longitude direction, the shear flow case). Under the above
assumptions on ū and b, there is a subset Λ of codimension one and a compact set C of R2

such that any family vε,0 of initial data microlocalized in Λ satisfies the following property:
the Rossby component vRε of the solution vε to (1.9) constructed in Theorem 1 satisfies

∀t > 0, ‖vRε (t)‖L2(C) = O(1) .

The proof of Theorem 4 is given in Section 4.2 while Section 4.3 is devoted to the proof of
Theorem 5.
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4.1. Microlocalization. Because of the scaling of the Rossby hamiltonian, on the times
scales considered here the propagation of energy by Rossby waves is described by the hamil-
tonian dynamics

dxi
dt

=
∂τR
∂ξi

,
dξi
dt

= −∂τR
∂xi

which can be written explicitly

(4.2)

dx1

dt
= b′(x2)

〈ξ〉2b − 2ξ2
1

〈ξ〉4b
+ ū1(x),

dx2

dt
= −2b′(x2)

ξ1ξ2

〈ξ〉4b
+ ū2(x),

dξ1

dt
= −∂1ū1(x)ξ1 − ∂1ū2(x)ξ2,

dξ2

dt
= ξ1

2b(b′)2 − b′′〈ξ〉2b
〈ξ〉4b

− ∂2ū1(x)ξ1 − ∂2ū2(x)ξ2

where we recall that 〈ξ〉b =
√
ξ2

1 + ξ2
2 + b2(x2) . In order for the dynamics to be well defined

and also in order to justify the diagonalization process, we need the quantity 〈ξ〉b to remain
bounded from below for all times.

Proposition 4.1. Let C be some compact subset of R4 such that

C ∩ {(x1, x2, ξ1, ξ2) / ξ2
1 + ξ2

2 + b2(x2) = 0} = ∅ .

Then the bicharacteristics t 7→ (x(t), ξ(t)) of the Rossby Hamiltonian starting from any point
(x0

1, x
0
2, ξ

0
1 , ξ

0
2) of C are defined globally in time, and ∀t ∈ R,

inf
(x01,x

0
2,ξ

0
1 ,ξ

0
2)∈C

(ξ1(t)2 + ξ2(t)2 + b2(x2(t)) > 0.

Proof. As b′, b′′, u and Du are Lipschitz, by the Cauchy-Lipschitz theorem the system of
ODEs (4.2) has a unique maximal solution. In order to prove that this solution is defined
globally, it is enough to prove that the time derivative of this solution is uniformly bounded.

This comes from assumption (1.6) giving an upper bound on b′/
(
1 + b2(x2)

) 1
2 and b′′/

(
1 +

b2(x2)
) 1

2 , and from the lower bound on 〈ξ〉b to be established now.

The crucial assumption here is the fact that b′ and b do not vanish simultaneously.

So let us suppose that 〈ξ〉b vanishes, and consider the first time t∗ at which 〈ξ〉b(t∗) = 0.
Assume to start with that x(t∗) lies outside the support of ū. Then there is a small amount
of time (t−, t∗), t− < t∗, on which x(t) remains outside the support of ū. So on the inter-
val (t−, t∗), ξ1 is a constant hence remains zero, and an inspection of the ODEs then shows
that on (t−, t∗), x2 and ξ2 are also constant, hence 〈ξ〉b(t) = 0 which is impossible by definition
of t∗.

Now let us assume that x(t∗) does not lie outside the support of ū, where t∗ is still the first
time t∗ at which 〈ξ〉b(t∗) = 0, assuming such a time exists. We shall prove that

(4.3) |〈ξ〉b(t)| . (t∗ − t)
1
2 , t→ t∗.
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Indeed we have clearly

1

2

d

dt
〈ξ〉2b = b(x2)b′(x2)

dx2

dt
+ ξ1

dξ1

dt
+ ξ2

dξ2

dt

= b(x2)b′(x2)ū2(x)− ∂1ū(x) · ξ − ∂2ū(x) · ξ +
b′′(x2)ξ1ξ2

〈ξ〉2b
(4.4)

so in particular we find that
d

dt
〈ξ〉2b is bounded as t goes to t∗, hence (4.3) holds.

Moreover along a trajectory of the Rossby Hamiltonian, τR is conserved, and we have

dx1

dt
=
b′(x2)

〈ξ〉2b
− 2(τR − u(x) · ξ)2

b′(x2)
+ ū1(x).

Since b′ and b do not vanish simultaneously, this in turn implies that there is a constant C
such that as t goes to t∗, ∣∣∣dx1

dt

∣∣∣ ≥ C

t∗ − t
·

In particular there is a time t < t∗ at which the trajectory has escaped the support of ū,
which is contrary to our assumption. This concludes the proof of the proposition. �

4.2. Trapping in the latitude direction.

Proof of Theorem 4. The energy surfaces corresponding to τR 6= 0 are bounded in the x2

direction : as x2 → ±∞,

b′(x2)ξ1

〈ξ〉2b
+ ū(x) · ξ → 0 .

Consider now a trajectory on the energy level τR = 0, and some point of this trajec-
tory (y1, y2, ξ1, ξ2) such that y2 /∈ Suppx2 ū. One has

b′(y2)ξ1 = 0 .

- If b′(y2) = 0, then

dx1

dt
=
dx2

dt
=
dξ1

dt
=
dξ2

dt
= 0 .

The uniqueness in Cauchy-Lipschitz theorem implies then that the trajectory is nothing else
than a fixed point, and therefore in particular is bounded.

- If ξ1 = 0, then

dx2

dt
=
dξ1

dt
=
dξ2

dt
= 0 and

dx1

dt
= b′(y2)

ξ2
2 + b2(y2)− ξ2

1

〈ξ〉4b
,

meaning that the trajectory is a uniform straight motion along x1. In particular, it is bounded
in the x2-direction.

Finally, we conclude that trajectories on the energy level τR = 0 are either trapped in the
support Suppx2 ū, or trivial in the x2-direction. �
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4.3. Trapping in the longitude direction in the shear flow case.

Proof of Theorem 5. The strategy to study the qualitative behaviour of the trajectories is to
first (in Paragraph 4.3.1) consider the motion in the reduced phase space (x2, ξ2) ∈ R2 and
then (in Paragraph 4.3.2) to study the motion in the x1 direction.

4.3.1. Trajectories in the reduced (x2, ξ2) phase space. In this section we study the trajectories
in the reduced (x2, ξ2) phase space. We shall denote ξ1 := ξ0

1 .

Since the Hamiltonian τ̃R and ξ1 are conserved along any trajectory, trajectories are subman-
ifolds of

Eτ,ξ1 :=
{

(x2, ξ2) ∈ R2 ; τ̃R(ξ1, x2, ξ2) = τ
}
.

In the following we shall note for any energy τ and any ξ1 ∈ R∗

Vτ,ξ1(x2) :=
b′(x2)ξ1

τ − ū1(x2)ξ1
− ξ2

1 − b2(x2),

so that if D :=
{
x2

/
Vτ,ξ1(x2) ≥ 0

}
, then Eτ,ξ1 =

{(
x2,±

√
Vτ,ξ1(x2)

)
, x2 ∈ D

}
. Note

that Vτ,ξ1(xt2) becomes singular if xt2 reaches a point x2 such that τ = ū1(x2)ξ1.

Several types of trajectories can correspond to such a system (see [5]), we shall isolate two
particular types of trajectories here: periodic ones, and asymptotic ones.

Periodic trajectories: These correspond to the case when there exists [xmin, xmax] in R
with xmin 6= xmax, containing x0

2 such that

• Vτ,ξ1 has no singularity and does not vanish on ]xmin, xmax[;
• Vτ,ξ1(xmin) = Vτ,ξ1(xmax) = 0;
• the points xmin and xmax are reached in finite time.

The extremal points xmin and xmax are then turning points, meaning that the motion is
periodic, with a typical phase portrait as shown in the figure.

x2 

ξ2 

xmin xmax 

Asymptotic trajectories: These correspond to the case when there exists an interval [xmin, xmax]
of R containing x0

2 such that
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• Vτ,ξ1 has no singularity and does not vanish on ]xmin, xmax[;
• xmin and xmax are either zeros or singularities of Vτ,ξ1 ;
• as t→∞, xt2 → x∞2 where x∞2 ∈ {xmin, xmax} is a pole of multiplicity 1 of Vτ,ξ1 . For

the sake of simplicity, we further impose that b′(x∞2 ) 6= 0.

x2 

ξ2 

xs 

Let us compute the rate of convergence of ξ2 to infinity: without loss of generality, we can
consider the case when the asymptotic point is xmax. Then we recall that

lim
t→+∞

ξt2 =∞ and lim
t→+∞

xt2 = x∞2 , with ξ1ū1(x∞2 ) = τ.

As x tends to x∞2 , we have (recalling that b′(x∞2 ) 6= 0)

Vτ (x) ∼ − b
′(x∞2 )

ū′1(x∞2 )
(x− x∞2 )−1 .

This implies that

|ξt2|2 ∼ −
b′(x∞2 )

ū′1(x∞2 )
(x− x∞2 )−1 and ẋt2 ∼ −2b′(x∞2 )ξ1

ξt2
|ξt2|4

∼ 2
|ū′1(x∞2 )|3/2|ξ1|
|b′(x∞2 |1/2

(x∞2 − x)3/2 .

By integration, we get

xt2 ∼ x∞2 + C1 t
−2, ξt2 ∼ C2t .

4.3.2. Analysis of the trajectories in the x1 direction: trapping phenomenon. Let us prove
the following result.

Proposition 4.2. A necessary and sufficient condition for a periodic or an asymptotic tra-
jectory to be trapped is

lim
t→T

1

t

∫ t

0
ẋs1ds = 0,

where T denotes the (finite) period of the motion along x2 in the periodic case, and T = +∞
in the asymptotic case.

Proof. We will study separately the different situations described in the previous section,
namely the case of periodic and asymptotic trajectories in (x2, ξ2).
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• In the case of a periodic motion in (x2, ξ2) of period T > 0, the function ẋt1 is also periodic,
with the same period. Writing

xt1 = x0
1 +

∫ t

0

(
ẋs1 −

1

T

∫ T

0
ẋs
′

1 ds′
)
ds+

t

T

∫ T

0
ẋs1 ds

we see that depending on the average of ẋt1 over [0, T ], xt1 is either a periodic function, or
the sum of a periodic function and a linear function. It follows that trapped trajectories are

characterized by the criterion

∫ T

0
ẋt1dt = 0.

• For asymptotic motions, we need to check that

ẋt1 − ū1(x∞2 )t is integrable at infinity.

We have indeed

ẋt1 = ū1(xt2) +
b′(xt2)(−ξ2

1 + ξt2
2

+ b2(xt2))

(ξ2
1 + ξt2

2
+ b2(xt2))2

,

which, together with the asymptotic expansions of xt2 and ξt2 obtained in the previous section,
implies that

ẋt1 = ū1(x∞2 ) +O(t−2).

It is then clear that the trajectory is trapped if and only if

ū1(x∞2 ) = lim
t→∞

1

t

∫ t

0
ẋs1ds = 0 .

That proves the proposition. �

Now we shall conclude the proof of Theorem 5 by constructing a subset of R4 of codimension
one in which all initial data lead to a trapped asymptotic trajectory. As we want to study
trapped asymptotic trajectories, we restrict our attention to the case when τ = 0, which
is a necessary condition for asymptotic trajectories to be trapped. Extremal points of the
trajectories are then defined in terms of the function

V0,ξ1(y) = − b′(y)

ū1(y)
− b(y)2 − ξ2

1 .

Let us define

%(y) := − b′(y)

ū1(y)
− b(y)2 , y ∈ ]y1, y2[ .

By definition of y1 and y2 (see the introduction of this part), one has

lim
y→y1+

%(y) = +∞ and lim
y→y2−

%(y) = +∞.

Let us define N := max
(

0 ; inf
y∈ ]y1,y2[

%(y)
)
∈ R+ . For ξ1 such that ξ2

1 ≥ N , we then define

h(ξ1) := sup
{
y ∈ ]−∞, y2[ ; %(y) ≤ ξ2

1

}
∈ ]y1, y2[ .

We therefore have that

∀y ∈]h(ξ1), y2[, y is neither a turning point nor a singular point.
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As h is a decreasing function on ]−∞,−
√
N ], all ξ1 ∈]−∞,−

√
N ] except a countable number

are continuity points. Choose then some ξ̃1 to be a continuity point of h and x̃0
2 ∈]h(ξ̃1), y2[.

By continuity of h, there exists a neighborhood Ṽ of (x̃0
2, ξ̃1) such that

∀(x0
2, ξ1) ∈ Ṽ , x0

2 − h(ξ1) > 0 .

The set {
(
x0

1, ξ1, x
0
2, (%(x0

2)− ξ2
1)

1
2
)

; (x0
1, ξ1, x

0
2) ∈ R × Ṽ

}
is a submanifold of R ×R∗ ×R2

having codimension 1. Furthermore, for any initial data in this set, we have ẋ2|t=0 > 0 and a

simple connexity argument shows that xt2 is an increasing function of time. In particular we
have xt2 → y2 as t→∞. This concludes the proof of Theorem 5. �

5. The nonlinear equation

In this final section we prove that the life span of the nonlinear equation may be bounded
from below uniformly in ε. Moreover we check that the solution to the nonlinear equation
remains close, in L2, to the solution of the linear equation. The result is the following, which
deals more generally with the next system, for η ≥ 0:

(5.1) ε2∂tU +A(x, εDx)U + ε3+ηS1(U)ε∂1U + ε3+ηS2(U)ε∂2U = 0, η ≥ 0 .

The case η = 0 corresponds of course to the original system (1.3) presented in the introduction.

Theorem 6 (The nonlinear equation). Let Uε,0 be any initial data bounded in W 4
ε . Then the

following results hold.

(1) The case η = 0:
(a) There exists some T ∗ > 0 such that the initial value problem (5.1) with η = 0 has

a unique solution Uε on [0, T ∗[ for any ε > 0.
(b) Assume that the solution Vε to the linear equation (1.9) satisfies

‖εVε‖L2([0,T ∗[;L∞) → 0 as ε→ 0.

Then the solution Uε to (5.1) with η = 0 satisfies

‖Uε − Vε‖L2 → 0 uniformly on [0, T ∗[ as ε→ 0.

(2) The case η > 0: Le T > 0 be fixed. Then there is ε0 > 0 such that for any ε ≤ ε0, the
equation (5.1) has a unique solution Uε on [0, T ]. Moreover,

‖Uε − Vε‖L2 → 0 uniformly on [0, T ] as ε→ 0.

Remark 5.1. The refined L∞ estimate on the linear solution required in result (1b) should
be proved by using

• some generalized WKB expansion for the Rossby waves (on Fourier side near caustics),
together with estimates on Airy functions (note that before the first caustic the WKB
expansion gives immediately the required estimate);
• some stationary phase lemma to estimate the contribution of Poincaré waves.

Depending on the degeneracy of stationary points, we should gain some small power of ε due
to the oscillatory behaviour of the integrals.
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Proof of Theorem 6. Extending a result by Dutrifoy, Majda and Schochet [7] obtained in
the particular case when b(x2) = βx2, we shall prove that there is an operator of principal
symbol (ξ2

1 + ξ2
2 + b2)Id which “almost commutes” with A(x, εDx) in the semiclassical regime.

The first step, as in [7], is to perform the following orthogonal change of variable

Ũ :=

(
u0 + u1√

2
,
u0 − u1√

2
, u2

)
in order to produce the generalized creation and annihilation operators

L± :=
1√
2

(
ε∂2 ∓ b

)
.

The system can indeed be rewritten

ε2∂tŨ + Ã(x, εDx)Ũ + ε3S̃1(Ũ)ε∂1Ũ + ε3S̃2(Ũ)ε∂2Ũ = 0

with

Ã(x, εDx) :=

εū1ε∂1 + ε∂1 0 L+

0 εū1ε∂1 − ε∂1 L−
L− L+ εū1ε∂1

+O(ε2Id) ,

and

S̃1(Ũ) :=


3ũ0 − ũ1

2
√

2
0 0

0
ũ0 − 3ũ1

2
√

2
0

0 0
ũ0 − ũ1√

2

 ,

and S̃2(Ũ) :=


ũ2 0

ũ0 + ũ1

4

0 ũ2
ũ0 + ũ1

4
ũ0 + ũ1

4

ũ0 + ũ1

4
ũ2

 .

Next, remarking that [ε2∂2
2 − b2, ε∂2 ± b] = ±2εb′(ε∂2 ± b)± ε2b′′, we introduce the operator

Dε :=

ε2∂2
2 − b2 + 2εb′ 0 0

0 ε2∂2
2 − b2 − 2εb′ 0

0 0 ε2∂2
2 − b2

 .

We notice that Dε is a scalar operator at leading order. Moreover one can compute the
commutator [ε2∂2

1 +Dε, Ã(x, εDx)]: we find

(5.2) [ε2∂2
1 +Dε, Ã(x, εDx)] = O(ε2(Id− ε2∂2

1 −Dε))

meaning that the commutator [ε2∂2
1 + Dε, Ã(x, εDx)] is of order O(ε2) with respect to the

elliptic operator Id− ε2∂2
1 −Dε. That implies that the regularity of the solution to the linear

equation

ε2∂tV + Ã(x, εDx)V = 0

can be controlled by an application of Gronwall’s lemma: one has

ε2‖(Id−ε2∂2
1−Dε)V (t)‖2L2 ≤ ε2‖(Id−ε2∂2

1−Dε)V0‖2L2 +Cε2

∫ t

0
‖(Id−ε2∂2

1−Dε)V (s)‖2L2ds ,
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where C depends on the W 2,∞ norms of ū1 and b, so

‖(Id− ε2∂2
1 −Dε)V (t)‖2L2 ≤ C‖(Id− ε2∂2

1 −Dε)V0‖2L2 e
Ct.

Now let us consider the nonlinear equation. Since the extended harmonic oscillator controls
two derivatives in x2, we get a control on the Lipschitz norm of U of the type

(5.3) ‖ε∂jU‖L∞ ≤
C

ε
(‖D2

εU‖L2 + ‖ε4∂4
1U‖L2 + ‖U‖L2) .

As Dε is a scalar differential operator at leading order in ε, the antisymmetry of the higher
order nonlinear term is preserved. More precisely, we have, using the Leibniz formula,

ε2∂tDεŨ + Ã(x, εDx)DεŨ + ε3S̃1(Ũ)ε∂1DεŨ + ε3S̃2(Ũ)ε∂2DεŨ

= −[Dε, Ã(x, εDx)]Ũ − ε3S̃2(Ũ)[Dε, ε∂2]Ũ − ε3[Dε, S̃j(Ũ)]ε∂jŨ

as well as

ε2∂tD
2
ε Ũ + Ã(x, εDx)D2

ε Ũ + ε3S̃1(Ũ)ε∂1D
2
ε Ũ + ε3S̃2(Ũ)ε∂2D

2
ε Ũ = −[D2

ε , Ã(x, εDx)]Ũ

−ε3S̃2(Ũ)[Dε, ε∂2]DεŨ − ε3[Dε, S̃j(Ũ)]ε∂jDεŨ

+Dε

(
−ε3S̃2(Ũ)[Dε, ε∂2]Ũ − ε3[Dε, S̃j(Ũ)]ε∂jŨ

)
.

and in the same way, for 1 ≤ ` ≤ 4,

ε2∂t(ε∂1)`Ũ + Ã(x, εDx)(ε∂1)`Ũ + ε3S̃1(Ũ)(ε∂1)`+1Ũ + ε3S̃2(Ũ)ε∂2(ε∂1)`Ũ

= −ε4
∑̀
k=1

C`4(ε∂1)`S̃j(Ũ)ε∂j(ε∂1)`−kŨ .

In all cases, the terms of higher order disappear by integration in x and the other terms are
controlled with the following trilinear estimate (writing generically Q̃(Ũ) for all the nonlin-
earities): for all 0 ≤ k ≤ 2 and all 0 ≤ ` ≤ 4

(5.4)

| < Dk
ε Ũ |Dk

ε Q̃(Ũ) > |+ | < (ε∂1)`Ũ |(ε∂1)`Q̃(Ũ) > |

≤ C‖Ũ‖
W 1,∞
ε

(‖D2
ε Ũ‖L2 + ‖(ε∂1)4Ũ‖L2 + ‖Ũ‖L2)2

≤ C

ε

(
‖D2

ε Ũ‖L2 + ‖(ε∂1)4Ũ‖L2 + ‖Ũ‖L2

)3
.

Remark 5.2. Note that because of the bad embedding inequality ‖∇U‖L∞ ≤
1

ε
‖U‖W 4

ε
, we

lose one power of ε, which seems not to be optimal considering for instance the fast oscillating

functions x2 7→ exp

(
ik2x2

ε

)
. A challenging question in order to apply semiclassical methods

to nonlinear problems is to determine appropriate functional spaces which measures on the one
hand the Sobolev regularity of the amplitudes, and on the other hand the oscillation frequency.

We are finally able to obtain a uniform life span for the weakly nonlinear system, thus
proving result (1a) of Theorem 6. Indeed combining the trilinear estimate (5.4) and the
commutator estimate (5.2), we obtain the following Gronwall inequality

ε2 d

dt

(
‖D2

ε Ũ‖2L2 + ‖(ε∂1)4Ũ‖2L2 + ‖Ũ‖2L2

)
≤ Cε2

(
1 + ‖D2

ε Ũ‖L2 + ‖(ε∂1)4Ũ‖L2 + ‖Ũ‖L2

)3
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from which we deduce the uniform a priori estimate

‖D2
ε Ũ‖2L2 + ‖(ε∂1)4Ũ‖2L2 + ‖Ũ‖2L2 ≤ (C0 − Ct)−2

where C0 depends only on the initial data. Such an estimate shows that the life span of the
solutions is at least T ∗ = C0/C.

Finally let us consider the approximation by the nonlinear dynamics, and prove results (1b)
and (2) of Theorem 6. The proof of both results relies on standard energy estimates.

If η = 0 and εVε → 0 in L∞, we use the decomposition

ε2∂t(Uε − Vε) +A(x, εDx)(Uε − Vε) + ε3(S̃j(Uε)− S̃j(Vε))ε∂jUε + ε3S̃j(Vε)ε∂jUε = 0

and obtain the following L2 estimate

ε2

2

d

dt
‖Uε − Vε‖2L2 ≤ 3ε3‖ε∂jUε‖L∞‖Uε − Vε‖2L2 + 3ε3‖Vε‖L∞‖ε∂jUε‖L2‖Uε − Vε‖L2

≤ Cε2(ε‖ε∂jUε‖L∞ + ‖ε∂jUε‖2L2)‖Uε − Vε‖2L2 + Cε2(ε‖Vε‖L∞)2

from which we conclude by Gronwall’s lemma

‖Uε − Vε‖2L2 ≤ C
∫ t

0
(ε‖Vε(s)‖L∞)2 expC

(∫ t

s
(ε‖ε∂jUε‖L∞ + ‖ε∂jUε‖2L2)dσ

)
ds

on [0, T ∗[, and that proves result (1b).

If η > 0, the same arguments show that the life span of the solutions to (5.1) tends to infinity
as ε → 0: Tε ≥ Cε−η , and that these solutions are uniformly bounded in W 4

ε on any finite
time interval. Furthermore, on any finite time interval [0, T ], the previous energy estimate
gives

ε2

2

d

dt
‖Uε − Vε‖2L2 ≤ Cε3+η‖ε∂jUε‖L∞‖Uε‖2L2 ,

from which we deduce

‖Uε − Vε‖2L2 ≤ Cεη
∫ t

0
ε‖ε∂jUε(s)‖L∞‖Uε(s)‖2L2ds .

Result (2) of Theorem 6 is proved, and that ends the proof of Theorem 6. �

Appendix A. Some well-known facts in semi-classical analysis

In this section we recollect some well-known facts in semi-classical analysis, which have been
used throughout the paper. Most of the material is taken from [6], [14], [22] and [23].

A.1. Semi-classical symbols and operators.
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A.1.1. Definitions. We recall that an order function is any function g ∈ C∞(Rd; R+ \ {0})
such that there is a constant C satisfying

∀X ∈ Rd, ∀α ∈ Nd, |∂αg(X)| ≤ Cg(X).

For instance g(x, ξ) = (1+ |ξ|2)
1
2 =: 〈ξ〉 is an order function. Note that the variable X usually

refers to a point (x, ξ) in the cotangent space T ∗Rn ≡ R2n, or to a point of the type (x, y, ξ)
with y ∈ Rn. A semi-classical symbol in the class Sd(g) is then a function a = a(X; ε)
defined on Rd×]0, ε0] for some ε0 > 0, which depends smoothly on X and such that for
any α ∈ Nd, there is a constant C such that |∂αa(X, ε)| ≤ Cg(X) for any (X, ε) ∈ Rd×]0, ε0].

If (aj)j∈N is a family of semi-classical symbols in the class Sd(g), we write that

a =

∞∑
j=0

εjaj +O(ε∞)

if for any N ∈ N and for any α ∈ Nd, there are ε0 and C such that

∀X ∈ Rd, ∀ε ∈]0, ε0]
∣∣∣∂α(a(X, ε)−

N∑
j=0

εjaj(X, ε)
)∣∣∣ ≤ CεNg(X).

Conversely for any sequence (aj)j∈N of symbols in Sd(g), there is a ∈ Sd(g) (unique up

to O(ε∞)) such that a =

∞∑
j=0

εjaj +O(ε∞). An ε-pseudodifferential operator is defined as

follows: if a belongs to S3n(g), and u is in D(Rn), then(
Opε(a)

)
u(x) :=

1

(2πε)n

∫
ei(x−y)·ξ/εa(x, y, ξ)u(y) dydξ.

A.1.2. Changes of quantization. If a ∈ S2n(g) and t ∈ [0, 1] then at(x, y, ξ) := a((1−t)x+ty, ξ)
belongs to S3n(g), and one defines Optε(a) := Opε(a

t). When t = 0 this corresponds to the
classical, or “left” quantization, and when t = 1/2 this is known as the Weyl quantization

(and is usually denoted by OpWε (a) = Op
1
2
ε (a)).

A classical symbol is a symbol a in S2n(〈ξ〉m) such that

a(x, ξ; ε) =

∞∑
j=0

εjaj(x, ξ) +O(ε∞)

with a0 not identically zero, and aj ∈ S2n(〈ξ〉m) independent of ε. The term ενa0 is the
principal symbol of the classical pseudo-differential operator A = Optε(a) (and this does
not depend on the quantization). On the other hand a1 is the subprincipal symbol of A =
ενOpWε (a) (in the Weyl quantization only). In the following we shall denote by σt(A) the
symbol of an operator A = Optε(a) (in other words a = σt(A)), and by σP (A) its principal
symbol.
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A.1.3. Microlocal support and ε-oscillation. If u is an ε-dependent function in a ball of L2(Rn),
its ε-frequency set (or microlocal support) is the complement in R2n of the points (x0, ξ0)
such that there is a function χ0 ∈ S2n(1) equal to one at (x0, ξ0), satisfying

‖OpWε (χ0u)‖L2(R2n) = O(ε∞).

We say that an ε-dependent function fε bounded in L2(Rn) is ε-oscillatory if for every
continuous, compactly supported function ϕ on Rn,

(A.1) lim sup
ε→0

∫
|ξ|≥R/ε

|ϕf̂ε(ξ)|2 dξ → 0 as R→∞.

An ε-dependent function fε bounded in L2(Rn) is said to be compact at infinity if

(A.2) lim sup
ε→0

∫
x≥R
|fε(x)|2 dx→ 0 as R→∞.

A.1.4. Adjoint and composition. Let a be a symbol in S3n(g), and define a∗(x, y, ξ) := a(y, x, ξ).
Then the operator (Opε(a))∗ := Opε(a

∗) satisfies for all u, v in S(Rn),(
(Opε(a))∗u, v

)
L2

=
(
u, (Opε(a))∗v

)
L2

and is therefore called the formal adjoint of Opε(a). In particular OpWε (a) is formally
self-adjoint if a is real. Let a and b be two symbols in S2n(g1) and S2n(g2) respectively. For
all t ∈ [0, 1], there is a unique symbol ct in S2n(g1g2) which allows to obtain Optε(a)◦Optε(b) =
Optε(ct). Moreover one has

(A.3) ct(x, ξ; ε) = eiε[∂u∂ξ−∂η∂v ] (a((1− t)x+ tu, η)b((1− t)v + tx, ξ)) | u = v = x

η = ξ

=: a#tb.

This can be also written

ct(x, ξ; ε) =
∑
k≥0

εk

ikk!
(∂η∂v−∂ξ∂u)k (a((1− t)x+ tu, η)b((1− t)v + tx, ξ)) | u = v = x

η = ξ

+O(ε∞).

In particular one has σt(A ◦ B) = σt(A)σt(B) + O(ε). Similarly if a and b are two symbols.
Then the principal symbol of OpWε (a)OpWε (b) is ab and its subprincipal symbol is 1

2i{a, b}.

A.2. Semiclassical operators, Wigner transforms and propagation of energy. One
of the main interests of the semiclassical setting is that it allows a precise description of the
propagation of the energy, on times of the order of O(ε). We refer for instance to [11] (Section
6) for the proof of the following property (actually in the more general setting of matrix-valued
operators): consider a scalar symbol τε(x, ξ) defined on R2n, belonging to the class S2n(〈ξ〉σ)
for some σ ∈ R (or more generally to S2n(g) ). We assume moreover that OpWε (τε) is
essentially skew-self-adjoint on L2(Rn). Then consider f0

ε an ε-oscillatory initial data in the
sense of (A.1), bounded in L2(Rn) and compact at infinity in the sense of (A.2), and the PDE

ε∂tfε + OpWε (τε)fε = 0, fε|t=0 = f0
ε .

Then the Wigner transform Wε(t, x, ξ) of fε(t) defined by

Wε(t, x, ξ) := (2π)−n
∫
Rn

eiv·ξfε(x−
ε

2
v)f̄ε(x+

ε

2
v) dv
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converges, locally uniformly in t, to the solution W of ∂tW + {τ0,W} = 0 where τ0 is the
principal symbol of τε, and where the Poisson bracket is given by

{τ0,W} := ∇ξτ0 · ∇xW −∇xτ0 · ∇ξW.
The interest of Wigner transforms lies in particular in the fact that under the assumptions

made on f0
ε , for any compact set K ⊂ Rn one has

∫
K
|fε(t, x)|2 dx = Wε(t,K ×Rn) due to

the fact that |fε(t, x)|2 =

∫
Rn

Wε(t, x, ξ) dξ.

Finally let us recall that if f ∈ L2(Rn) of norm 1 is a solution to

OpW (p)f = 0

where p is a classical symbol of principal part p0, then the microlocal support of f is included
in the chararteristic set {

(x, ξ) ∈ R2n , p0(x, ξ) = 0
}
.

A.3. Coherent states. A coherent state is Φp,q(y) := (πε)−
n
4 ei

(y−q)·p
ε e−

(y−q)2
2ε . Any tem-

pered distribution u defined on Rn may be written

u(y) = (2πε)−
n
2

∫
Tu(p, q)Φp,q(y) dpdq,

where T is the FBI (for Fourier-Bros-Iagolnitzer) transform

Tu(p, q) := 2−
n
2 (πε)−

3n
4

∫
ei

(q−y)·p
ε e−

(y−q)2
2ε u(y) dy.

This transformation maps isometrically L2(Rn) to L2(R2n). The above formula simply trans-
lates the fact that u = T ∗Tu.
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